A combined microtensile testing and nanoindentation study of the mechanical behavior of nanocrystalline LIGA Ni–Fe
-
Ruth Schwaiger
, Jan-Thorsten Reszat , Klaus Bade , Jarir Aktaa und Oliver Kraft
Abstract
In this work, we studied nanocrystalline LIGA Ni-2.6 at.% Fe and Ni-5.6 at.% Fe with an average grain size of 10 nm. Microtensile samples were produced by the LIGA process including direct current electrodeposition. Microstructures and mechanical properties were investigated in the as-deposited state as well as after annealing at different temperatures. Results from tensile testing were compared to nanoindentation experiments with a particular emphasis on the strain rate sensitivity of the alloys. The Ni – Fe alloys were confirmed to be suitable LIGA materials for applications that require high hardness combined with microstructural stability and low internal stresses. For both alloys with 10 nm grain size, tensile yield strength and corresponding hardness values of the order of 2 GPa and 6 GPa, respectively, were found. After annealing at moderate temperatures (200 °C), strength and hardness increased although some grain growth was observed.
References
[1] E.W.Becker, W.Ehrfeld, P.Hagman, A.Maner, D.Münchmeyer: Microelectron. Eng.4 (1986) 35–36.10.1016/0167-9317(86)90004-3Suche in Google Scholar
[2] http://www.mikrogetriebe.deSuche in Google Scholar
[3] M.Baghbanan, U.Erb, G.Palumbo: Phys. Status Solidi A203 (2006) 1259–1264.10.1002/pssa.200566155Suche in Google Scholar
[4] N.Wang, Z.Wang, K.T.Aust, U.Erb: Mater. Sci. Eng. A237 (1997) 150–158.10.1016/S0921-5093(97)00124-XSuche in Google Scholar
[5] F.D.Dalla Torre, H.Van Swygenhoven, M.Victoria, R.Schaeublin, W.Wagner, in: D.Farkas, H.Kung, M.Mayo, H.Van Swygenhoven, J.Weertman (Eds.), Mat. Res. Soc. Symp. Proc., Vol. 634 (2000) B2.8.1–B2.8.6.10.1557/PROC-634-B2.8.1Suche in Google Scholar
[6] F.D.Dalla Torre, H.Van Swygenhoven, M.Victoria: Acta Mater.50 (2002) 3957–3970.10.1016/S1359-6454(02)00198-2Suche in Google Scholar
[7] R.Schwaiger, B.Moser, M.Dao, N.Chollacoop, S.Suresh: Acta Mater.51 (2003) 5159–5172.10.1016/S1359-6454(03)00365-3Suche in Google Scholar
[8] C.Cheung, F.Djuanda, U.Erb, G.Palumbo: Nanostructured Materials5 (1995) 513–523.10.1016/0965-9773(95)00264-FSuche in Google Scholar
[9] H.Li, F.Ebrahimi: Mater. Sci. Eng. A347 (2003) 93–101.10.1016/S0921-5093(02)00586-5Suche in Google Scholar
[10] A.Fath, W.Leskopf, K.Bade, W.Bacher, in: P.J. Hesketh, S.S. Any, W.E. Bailey, J.L. Davidson, H.G. Hughes, D. Misra (Eds.), Microfabricated Systems and MEMS IV, Proc. Electrochem. Soc. (2000) 7–16.Suche in Google Scholar
[11] C.A.Schuh, T.G.Nieh, H.Iwasaki: Acta Mater.51 (2003) 431–443.10.1016/S1359-6454(02)00427-5Suche in Google Scholar
[12] T.Yamasaki: Scripta Mater.44 (2001) 1497–1502.10.1016/S1359-6462(01)00720-5Suche in Google Scholar
[13] A.Fath, W.Leskopf, K.Bade, W.Bacher: Galvanotechnik91 (2000) 1690–1697.Suche in Google Scholar
[14] U.Erb: Nanostructured Materials6 (1995) 533–538.10.1016/0965-9773(95)00114-XSuche in Google Scholar
[15] C.Gu, J.Lian, Z.Jiang: Adv. Eng. Mater.8 (2006) 252–255.10.1002/adem.200500197Suche in Google Scholar
[16] M.Thuvander, M.Abraham, A.Cerezo, G.D.W.Smith: Mater. Sci. Tech.17 (2001) 961–970.10.1179/026708301101510799Suche in Google Scholar
[17] H.Q.Li, F.Ebrahimi: Acta Mater.51 (2003) 3905–3913.10.1016/S1359-6454(03)00215-5Suche in Google Scholar
[18] F.Czerwinski, H.Li, M.Megret, J.A.Szpunar, D.G.Clark, U.Erb: Scripta Mater.37 (1997) 1967–1972.10.1016/S1359-6462(97)00390-4Suche in Google Scholar
[19] A.M.El-Sherik, U.Erb: J. Mater. Sci.30 (1995) 5743–5749.10.1007/BF00356715Suche in Google Scholar
[20] H.Natter, M.Schmelzer, R.Hempelmann: J. Mater. Res.13 (1998) 1186–1197.10.1557/JMR.1998.0169Suche in Google Scholar
[21] F.Ebrahimi, H.Li, Scripta Mater: 55 (2006) 263–266.Suche in Google Scholar
[22] H.Li, F.Ebrahimi: Acta Mater.54 (2006) 2877–2886.10.1016/j.actamat.2006.02.033Suche in Google Scholar
[23] V.Raman, M.Pushpavanam, B.A.Shenoy: Plating and Surface Finishing (1982) 132.Suche in Google Scholar
[24] C.E.Krill, R.Birringer: Phil. Mag. A77 (1998) 621–640.10.1080/01418619808224072Suche in Google Scholar
[25] A.Ilzhoefer, H.Schneider, C.Tsakmakis: Microsystem Technologies4 (1997) 46–50.10.1007/s005420050091Suche in Google Scholar
[26] J.Aktaa, J.T.Reszat, M.Walter, K.Bade, K.J.Hemker: Scripta Mater.52 (2005) 1217–1221.10.1016/j.scriptamat.2005.03.004Suche in Google Scholar
[27] B.N.Lucas, W.C.Oliver: Metall. Mater. Trans. A30 (1999) 601–610.10.1007/s11661-999-0051-7Suche in Google Scholar
[28] W.C.Oliver, G.M.Pharr: J. Mater. Res.7 (1992) 1564–1583.10.1557/JMR.1992.1564Suche in Google Scholar
[29] G.D.Hughes, S.D.Smith, C.S.Pande, H.R.Johnson, R.W.Armstrong: Scripta Metall.20 (1986) 93–97.10.1016/0036-9748(86)90219-XSuche in Google Scholar
[30] C.A.Schuh, T.G.Nieh, T.Yamasaki: Scripta Mater.46 (2002) 735–740.10.1016/S1359-6462(02)00062-3Suche in Google Scholar
[31] E.O.Hall: Proc. Phys. Soc., Ser. B64 (1951) 747–753.10.1088/0370-1301/64/9/303Suche in Google Scholar
[32] N.J.Petch: J. Iron Steel Inst. (1953) 25–28.Suche in Google Scholar
[33] F.Ebrahimi, G.R.Bourne, M.S.Kelly, T.E.Matthews: Nanostructured Materials11 (1999) 343–350.10.1016/S0965-9773(99)00050-1Suche in Google Scholar
[34] D.Wolf, V.Yamakov, S.R.Phillpot, A.Mukherjee, H.Gleiter: Acta Mater.53 (2005) 1–40.10.1016/j.actamat.2004.08.045Suche in Google Scholar
[35] H.Van Swygenhoven, A.Caro, D.Farkas: Scripta Mater.44 (2001) 1513–1516.10.1016/S1359-6462(01)00717-5Suche in Google Scholar
[36] J.Schiotz, K.W.Jacobsen: Science301 (2003) 1357–1359.10.1126/science.1086636Suche in Google Scholar PubMed
[37] T.Mukai, S.Suresh, K.Kita, H.Sasaki, N.Kobayashi, K.Higashi, A.Inoue: Acta Mater.51 (2003) 4197–4208.10.1016/S1359-6454(03)00237-4Suche in Google Scholar
[38] F.Dalla Torre, P.Spatig, R.Schaublin, M.Victoria: Acta Mater.53 (2005) 2337–2349.10.1016/j.actamat.2005.01.041Suche in Google Scholar
[39] Y.M.Wang, A.V.Hamza, E.Ma: Acta Mater.54 (2006) 2715–2726.10.1016/j.actamat.2006.02.013Suche in Google Scholar
[40] M.Dao, L.Lu, R.J.Asaro, J.T.M.D.Hosson, E.Ma: Acta Mater.55 (2007) 4041–4065.10.1016/j.actamat.2007.01.038Suche in Google Scholar
[41] Q.Wei, S.Cheng, K.T.Ramesh, E.Ma: Mater. Sci. Eng. A381 (2004) 71–79.10.1016/j.msea.2004.03.064Suche in Google Scholar
[42] E.Ma: Science305 (2004) 623–624.10.1126/science.1101589Suche in Google Scholar
[43] K.S.Kumar, S.Suresh, M.F.Chisholm, J.A.Horton, P.Wang: Acta Mater.51 (2003) 387–405.10.1016/S1359-6454(02)00421-4Suche in Google Scholar
[44] H.Van Swygenhoven, P.M.Derlet, A.Hasnaoui: Phys. Rev. B66 (2002) 02410118.Suche in Google Scholar
[45] R.L.Coble: J. Appl. Phys.34 (1963) 1679–1682.10.1063/1.1702656Suche in Google Scholar
[46] T.H.Courtney: Mechanical behavior of materials. 2nd edition: McGraw-Hill (2000).Suche in Google Scholar
[47] R.J.Asaro, S.Suresh: Acta Mater.53 (2005) 3369–3382.10.1016/j.actamat.2005.03.047Suche in Google Scholar
[48] H.Van Swygenhoven, P.M.Derlet, A.G.Froseth: Acta Mater.54 (2006) 1975–1983.10.1016/j.actamat.2005.12.026Suche in Google Scholar
© 2009, Carl Hanser Verlag, München
Artikel in diesem Heft
- Contents
- Contents
- Editorial
- Editorial
- Congratulations
- The 100th Volume of “International Journal of Materials Research” – the DGM congratulates!
- Feature
- The anatomy of the International Journal of Materials Research1 in the light of bibliometry
- Verhakungen, dislocations, solitons, and kinks
- Review
- Do we need a new conference series for the German materials community?
- Basic
- Bainite orientation in plastically deformed austenite
- Microstructure evolution during a liquid–liquid decomposition under the common action of the nucleation, growth and Ostwald ripening of droplets
- Surface tension of liquid binary alloys – theory versus experiment
- Reassessment of the Ni–B system supported by key experiments and first-principles calculation
- A combined microtensile testing and nanoindentation study of the mechanical behavior of nanocrystalline LIGA Ni–Fe
- Effect of electropulsing on the tensile flow stress of ultrafine-grained 3Y-TZP at 1400°C
- Applied
- Experimental survey on fluid brazing in ancient goldsmith' art
- Correlation between heat treatment, microstructure and mechanical properties of a hot-work tool steel
- Study of near surface changes in yttria-doped tetragonal zirconia after low temperature degradation
- Thermographic analysis of AlSi12 during crystallisation as a function of cooling rate
- Oxidation behaviour of experimental Co–Re-base alloys in laboratory air at 1000°C
- Notification
- DGM News
Artikel in diesem Heft
- Contents
- Contents
- Editorial
- Editorial
- Congratulations
- The 100th Volume of “International Journal of Materials Research” – the DGM congratulates!
- Feature
- The anatomy of the International Journal of Materials Research1 in the light of bibliometry
- Verhakungen, dislocations, solitons, and kinks
- Review
- Do we need a new conference series for the German materials community?
- Basic
- Bainite orientation in plastically deformed austenite
- Microstructure evolution during a liquid–liquid decomposition under the common action of the nucleation, growth and Ostwald ripening of droplets
- Surface tension of liquid binary alloys – theory versus experiment
- Reassessment of the Ni–B system supported by key experiments and first-principles calculation
- A combined microtensile testing and nanoindentation study of the mechanical behavior of nanocrystalline LIGA Ni–Fe
- Effect of electropulsing on the tensile flow stress of ultrafine-grained 3Y-TZP at 1400°C
- Applied
- Experimental survey on fluid brazing in ancient goldsmith' art
- Correlation between heat treatment, microstructure and mechanical properties of a hot-work tool steel
- Study of near surface changes in yttria-doped tetragonal zirconia after low temperature degradation
- Thermographic analysis of AlSi12 during crystallisation as a function of cooling rate
- Oxidation behaviour of experimental Co–Re-base alloys in laboratory air at 1000°C
- Notification
- DGM News