Home Dislocation structure and crystallite size distribution in lath martensite determined by X-ray diffraction peak profile analysis
Article
Licensed
Unlicensed Requires Authentication

Dislocation structure and crystallite size distribution in lath martensite determined by X-ray diffraction peak profile analysis

  • S. Hossein Nedjad and M.-R. Movaghar Gharabagh
Published/Copyright: June 11, 2013
Become an author with De Gruyter Brill

Abstract

X-ray diffraction peak profiles obtained from 18Ni lath martensite were analyzed in accordance with the modified Williamson – Hall and modified Warren – Averbach methodologies, aided by supplemental optical and transmission electron microscopy. After instrumental broadening removal, structural peak broadenings were determined for diffraction lines. Consequently, a log-normal size distribution with a mean size of about 156 nm was determined, corresponding reasonably to the lath width illustrated by means of transmission electron microscopy. Further, a dislocation density of 0.723 × 1016 m– 2 along with a near equal proportion of edge and screw dislocations were identified. Determination of the dislocation arrangement parameter revealed a weak dipole and thus, weak screening action of dislocation strain fields.


* Correspondence address, Dr. Syamak Hossein Nedjad, Faculty of Materials Engineering, Sahand University of Technology, P.O. Box: 51335-996, Tabriz, Iran, Tel.: +98 412 345 9449, Fax: +98 412 344 4333, E-mail:

References

[1] G.Krauss: Mater. Sci. Eng. A273 (1999) 40.10.1016/S0921-5093(99)00288-9Search in Google Scholar

[2] J.W.Morris, Jr., C.S.Lee, Z.Guo: ISIJ Int.43 (2003) 410.Search in Google Scholar

[3] S.Morito, H.Yoshida, T.Maki, X.Huang: Mater. Sci. Eng. A438 (2006) 237.Search in Google Scholar

[4] S.Morito, H.Tanaka, R.Konishi, T.Furuhara, T.Maki: Acta Mater.51 (2003) 1789.Search in Google Scholar

[5] H.Kitahara, R.Ueji, N.Tsuji, Y.Minamino: Acta Mater.54 (2006) 1279.Search in Google Scholar

[6] S.Morito, X.Huang, T.Maki, N.Hansen: Acta Mater.54 (2006) 5323.Search in Google Scholar

[7] S.Morito, J.Nishikawa, T.Maki: ISIJ Int.43 (2003) 1475.Search in Google Scholar

[8] B.P.J.Sandvik, C.M.Wayman: Metall. Trans. A14 (1983) 809.Search in Google Scholar

[9] D.K.Chaudhuri, P.A.Ravindran, J.J.Wert: J. Appl. Phys.43 (1972) 778.Search in Google Scholar

[10] T.Ungar, J.Gubicza, G.Ribarik, A.Borbely: J. Appl. Crystal.34 (2001) 298.Search in Google Scholar

[11] J.D.Kamminga, L.J.Seijbel: J. Res. Natl. Inst. Stand. Technol.109 (2004) 65.Search in Google Scholar

[12] A.R.Stokes: Proc. Phys. Soc.61 (1948) 382.10.1088/0959-5309/61/4/311Search in Google Scholar

[13] B.E.Warren: X-ray diffraction, Addison Wesley, Massachusetts (1969).Search in Google Scholar

[14] M.Wilkens: Acta Metall.15 (1967) 1412.10.1016/0001-6160(67)90020-XSearch in Google Scholar

[15] M.Wilkens: Acta Metall.17 (1969) 1155.10.1016/0001-6160(69)90092-3Search in Google Scholar

[16] T.Ungar, I.Dragomir, A.Revesz, A.Borbely: J. Appl. Crystal.32 (1999) 992.Search in Google Scholar

[17] T.Ungar, A.Brobely: App. Phys. Lett.69 (1996) 3173.Search in Google Scholar

[18] G.Ribarik, T.Ungar, J.Gubcza: J. Appl. Crystal.34 (2001) 669.Search in Google Scholar

[19] M.Wilkens: Phys. Stat. Sol. A2 (1970) 359.10.1002/pssa.19700020224Search in Google Scholar

[20] G.K.Williamson, W.H.Hall: Acta Metall.1 (1953) 22.Search in Google Scholar

[21] T.Maki, H.Morimoto, I.Tamura: Trans. ISIJ20 (1980) 700.Search in Google Scholar

[22] R.Z.Valiev, R.K.Islamgaliev, I.V.Alexandrov, Prog. Mater. Sci.45 (2000) 103.10.1016/S0079-6425(99)00007-9Search in Google Scholar

[23] T.Tsuchiyama, Y.Miyamoto, S.Takaki: ISIJ Int.41 (2001) 1047.Search in Google Scholar

Received: 2007-9-29
Accepted: 2008-8-26
Published Online: 2013-06-11
Published in Print: 2008-11-01

© 2008, Carl Hanser Verlag, München

Downloaded on 23.11.2025 from https://www.degruyterbrill.com/document/doi/10.3139/146.101759/html?lang=en
Scroll to top button