Startseite STAU – a review of the Karlsruhe weakest link finite element postprocessor with extensive capabilities
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

STAU – a review of the Karlsruhe weakest link finite element postprocessor with extensive capabilities

  • Heinz Riesch-Oppermann , Martin Härtelt und Oliver Kraft
Veröffentlicht/Copyright: 11. Juni 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The inherent brittleness of ceramics led to a probabilistic approach for designing with ceramic materials. For tackling this issue, numerous research projects led to the generation and continuous development of the weakest link postprocessor STAU over the last twenty years. Compared to other similar tools, STAU is unique in its comprehensive capabilities addressing spontaneous fracture, sub-critical crack propagation under transient loading, including a temperature-dependent fracture stress, and crack propagation parameters and analysis of strong stress gradients allowing for solving general thermo-mechanical problems including thermal shock and contact loading. Remarkably, the stress analysis, using commercial finite element codes, does not require a separate meshing with respect to the subsequent probabilistic analysis. Within the framework of a collaborative research effort (SFB 483) ceramics are qualified with respect to friction and wear for highly demanding applications. Here, uncertainty analysis methods for STAU were developed and led to an important extension of STAU for several technological applications. In this paper, the main features of STAU as well as the physical background are revisited and some application cases are shown.


* Correspondence address, Dr. Heinz Riesch-Oppermann, Forschungszentrum Karlsruhe GmbH, P.O. Box 36 40, D-76021 Karlsruhe, Germany, Tel.: +49 7247 82 41 55, Fax: +49 7247 82 23 47, E-mail:

Dedicated to Professor Dr. Karl-Heinz Zum Gahr on the occasion of his 65th birthday


References

[1] A.Brückner-Foit, A.Heger, K.Heiermann, P.Hülsmeier, A.Mahler, A.Mann, H.Riesch-Oppermann, S.Scherrer-Rudiy, I.Ulrich, C.Ziegler: STAU 5 User's Manual, Internal Report, Forschungszentrum Karlsruhe (2007).Suche in Google Scholar

[2] B.Schenk, P.J.Brehm, M.N.Menon, W.T.Tucker, A.D.Peralta: J. Eng. Gas Turbines Power122 (2000) 637645.10.1115/1.1287492Suche in Google Scholar

[3] N.N.Nemeth, L.M.Powers, L.A.Janosik, J.P.Gyekenyesi: CARES/LIFE Ceramics Analysis and Reliability Evaluation of Structures Life Prediction Program, NASA/TM-2003-106316, Cleveland, Ohio (2003).Suche in Google Scholar

[4] S.Krüger, R.Jakel, D.Rubio, H.-J.Barth: Konstruktion51 (1999) 3336.Suche in Google Scholar

[5] K.-H.ZumGahr, J.Schneider: Mat.-wiss. u. Werkstofftech.36 (2005) No. 3/4, 91190.Suche in Google Scholar

[6] F.T.Peirce: J. Text. Inst.17 (1926) T355368.10.1080/19447027.1926.10599953Suche in Google Scholar

[7] W.Weibull: Ingeniors Vetenskaps Akad. Handl.151 (1939) 145.Suche in Google Scholar

[8] S.B.Batdorf, J.G.Crose: J. Applied Mechanics41 (1974) 459461.10.1115/1.3423310Suche in Google Scholar

[9] S.B.Batdorf, H.L.Heinisch: J. Am. Ceram. Soc.61 (1978) 355358.10.1111/j.1151-2916.1978.tb09327.xSuche in Google Scholar

[10] A.G.Evans: J. Am. Ceram. Soc.61 (1978) 302308.10.1111/j.1151-2916.1978.tb09314.xSuche in Google Scholar

[11] Y.Matsuo: Bull. JSME24 (1981) 290294.10.1299/jsme1958.24.290Suche in Google Scholar

[12] A.Brückner-Foit, A.Heger, D.Munz, in: C.R.Brinkman, S.F.Duffy (Eds.), Life Prediction Methods and Data for Ceramic Materials, ASTM STP 1201, American Society for Testing and Materials, Philadelphia (1994) 346359.Suche in Google Scholar

[13] A.Brückner-Foit, C.Ziegler: Ceramic Engineering and Science Proceedings 19 (1998) No. 4, 99106.Suche in Google Scholar

[14] P.Hülsmeier: Lebensdauervorhersage für keramische Bauteile unter Thermoschockbelastung (Dissertation), Universität Kassel (2005).Suche in Google Scholar

[15] D.Munz, T.Fett: Ceramics – Mechanical Properties, Failure Behaviour, Materials Selection, Springer (1999).10.1007/978-3-642-58407-7Suche in Google Scholar

[16] T.Thiemeier: Lebensdauervorhersage für keramische Bauteile unter mehrachsiger Beanspruchung, (Dissertation), Universität Karlsruhe (1989).Suche in Google Scholar

[17] T.Thiemeier, A.Brückner-Foit, H.Kölker: J. Am. Ceram. Soc.74 (1991) 4852.10.1111/j.1151-2916.1991.tb07295.xSuche in Google Scholar

[18] K.-S.Schirmer: Entwicklung von Versagenskriterien für keramische Bauteile unter mehrachsiger Belastung, Fortschritt-Berichte VDI, Reihe 18, Nr. 174, VDI-Verlag, Düsseldorf (1995).Suche in Google Scholar

[19] A.Brückner-Foit, T.Fett, K.Schirmer, D.Munz: J. Eur. Ceram. Soc.16 (1996) 12011207.10.1016/0955-2219(96)00055-6Suche in Google Scholar

[20] A.Brückner-FoitP.Hülsmeier, M.Sckuhr, H.Riesch-Oppermann: ASME Paper 2000-GT-663.Suche in Google Scholar

[21] C.Ziegler: Bewertung der Zuverlässigkeit keramischer Komponenten bei zeitlich veränderlichen Spannungen und bei Hochtemperaturbelastung, Fortschritt-Berichte VDI, Reihe 18, Nr. 228, VDI-Verlag Düsseldorf (1998).Suche in Google Scholar

[22] A.Brückner-Foit, C.Ziegler: ASME Paper 99-GT-233.Suche in Google Scholar

[23] T.Fett, D.Munz: J. Mat. Sci. Lett.17 (1998) 307309.10.1023/A:1006585706742Suche in Google Scholar

[24] M.Härtelt, H.Riesch-Oppermann, O.Kraft, in: K.-H.Zum Gahr, J.Schneider (Eds.), 3. Statuskolloquium des Sonderforschungsbereichs 483 – Hochbeanspruchte Gleit- und Friktionssysteme auf Basis ingenieurkeramischer Werkstoffe, Universität Karlsruhe (2007) 129136.Suche in Google Scholar

[25] R.Nejma, K.-H.Lang, D.Löhe: Mat. Sci. Eng. A387–389 (2004) 832836, DOI:10.1016/j.msea.2004.02.090.10.1016/j.msea.2004.02.090Suche in Google Scholar

[26] C.Lu, R.Danzer, F.D.Fischer: Phys. Rev. E65 (2002) 067102, DOI: 10.1103/PhysRevE.65.067102.10.1103/PhysRevE.65.067102Suche in Google Scholar

[27] R.Danzer, T.Lube, P.Supancic, R.Damani: Advanced Engineering Materials10 (2008) 275298, DOI: 10.1002/adem.200700347.10.1002/adem.200700347Suche in Google Scholar

[28] H.Bueckner: ZAMM50 (1970) 529546.Suche in Google Scholar

[29] T.Fett, D.Munz: Stress intensity factors and weight functions, Computational Mechanics Publ., Southampton (1997).Suche in Google Scholar

[30] M.A.Sckuhr, Spannungssingularitäten und deren Bewertung in mechanisch beanspruchten Zweistoffverbunden unter Berücksichtigung der Plastizität, (Dissertation), Universität Karlsruhe (1997).Suche in Google Scholar

[31] A.Brückner-Foit, in: K.H.Buschow (Ed.), Encyclopedia of Materials: Science and Technology, Elsevier (2001) 817823.Suche in Google Scholar

[32] O.M.Jadaan, N.N.Nemeth: Fat. Fract. Eng. Mat. Struct.24 (2001) 475487.10.1046/j.1460-2695.2001.00419.xSuche in Google Scholar

[33] J.Bagdahn, W.N.SharpeJr., O.Jadaan: J. MEMS12 (2003) 302312, DOI: 10.1109/JMEMS. 2003.814130.Suche in Google Scholar

[34] A.Brückner-FoitP.Hülsmeier, E.Diegele, U.Rettig, C.Hohmann: ASME Paper 2002-GT-30502.Suche in Google Scholar

[35] www.icf11.com/proceeding/EXTENDED/4993.pdfSuche in Google Scholar

[36] O.M.Jadaan, N.N.Nemeth, J.Bagdahn, W.N.Sharpe, Jr.: J. Mat. Sci.38 (2003) 40874113.10.1023/A:1026317303377Suche in Google Scholar

[37] L.Dortmans, T.Thiemeier, A.Brückner-Foit, J.Smart: J. Eur. Ceram. Soc.11 (1993) 1722.10.1016/0955-2219(93)90054-USuche in Google Scholar

[38] A.Heger: Bewertung der Zuverlässigkeit mehrachsig beanspruchter keramischer Bauteile, Fortschritt-Berichte VDI, Reihe 18, Nr. 132, VDI-Verlag Düsseldorf (1993).Suche in Google Scholar

[39] T.Fett, D.Munz: J. Mat. Sci.28 (1993) 742752.10.1007/BF01151251Suche in Google Scholar

[40] D.Munz: J. Am. Ceram. Soc.90 (2007) 115, DOI: 10.1111/j.1551–2916.2006.01447.x10.1111/j.1551-2916.2006.01447.xSuche in Google Scholar

[41] A.Brückner-Foit, A.Heger, D.Munz: J. Eng. Gas Turbines Power117 (1995) 413416.10.1115/1.2814111Suche in Google Scholar

[42] C.M.Bishop: Neural Networks for Pattern Recognition, Oxford University Press, Oxford (1995 & numerous reprints).Suche in Google Scholar

[43] I.Khader, A.Kailer, P.Gumbsch, in: K.-H.ZumGahr, J.Schneider (Eds.), 3. Statuskolloquium des Sonderforschungsbereichs 483 – Hochbeanspruchte Gleit- und Friktionssysteme auf Basis ingenieurkeramischer Werkstoffe, Universität Karlsruhe (2007) 95103.Suche in Google Scholar

[44] T.J.DiCiccio, B.Efron: Statistical Science11 (1996) 189211.10.1214/ss/1032280214Suche in Google Scholar

[45] K.Heiermann: Konfidenzintervalle für die Ausfallwahrscheinlichkeit keramischer Bauteile auf Grundlage der Bootstrapmethode (Dissertation), FZKA Report 6918, Forschungszentrum Karlsruhe (2003).Suche in Google Scholar

[46] K.Heiermann, H.Riesch-Oppermann, N.Huber: Computational Materials Science34 (2005) 113, DOI:10.1016/j.commatsci.2004.10.002.10.1016/j.commatsci.2004.10.002Suche in Google Scholar

[47] H.Riesch-Oppermann, S.Scherrer-Rudiy, T.Erbacher, O.Kraft: Engineering Fracture Mechanics74 (2007) 29332942; (Special Issue on “Reliability – Statistical Methods in Fracture and Fatigue”), DOI:10.1016/j.engfracmech.2006.05.026.10.1016/j.engfracmech.2006.05.026Suche in Google Scholar

[48] T.Erbacher, T.Beck, O.Vöhringer: Mat-wiss. u. Werkstofftech.36 (2005) 14856, DOI: 10.1002/mawe.200500859.10.1002/mawe.200500859Suche in Google Scholar

[49] S.Roudi, H.Riesch-Oppermann, O.Kraft: Mat.-wiss. u. Werkstofftech.36 (2005) 171176, DOI: 10.1002/mawe.200500861.10.1002/mawe.200500861Suche in Google Scholar

Received: 2008-4-4
Accepted: 2008-7-25
Published Online: 2013-06-11
Published in Print: 2008-10-01

© 2008, Carl Hanser Verlag, München

Artikel in diesem Heft

  1. Contents
  2. Contents
  3. Editorial
  4. To Professor Dr.-Ing. Karl-Heinz Zum Gahr on the occation of his 65th birthday
  5. Review
  6. Innovative materials for energy technology
  7. STAU – a review of the Karlsruhe weakest link finite element postprocessor with extensive capabilities
  8. Basic
  9. “Evolution” of microstructure in materials
  10. X-ray analysis of steep residual stress gradients: The 2θ-derivative method
  11. Investigation of surface fatigue of thermally sprayed micro- and nanocrystalline cylinder wall coatings by means of cavitation testing
  12. Thermal, mechanical and fretting fatigue of silicon nitride
  13. Effect of phase stability and composition on hydrogen diffusion in the binary systems Ti–Mo and Ti–V and related Ti-base alloys
  14. Determination of vK curves from lifetime tests with reloaded survivals
  15. Mechanical properties of a single gecko seta
  16. Applied
  17. Influence of Fe–F-co-doping on the dielectric properties of Ba0.6Sr0.4TiO3 thick-films
  18. Microstructural and acoustic damage analysis and finite element stress simulation of air plasma-sprayed thermal barrier coatings under thermal cycling
  19. The running-in of amorphous hydrocarbon tribocoatings: a comparison between experiment and molecular dynamics simulations
  20. Development of multifunctional thin films using high-throughput experimentation methods
  21. A transmission electron microscopy procedure for in-situ straining of miniature pseudoelastic NiTi specimens
  22. Recent developments in micro ceramic injection molding
  23. σ-phase morphologies and their effect on mechanical properties of duplex stainless steels
  24. Development of high power density cathode materials for Li-ion batteries
  25. Notification
  26. DGM News
Heruntergeladen am 21.10.2025 von https://www.degruyterbrill.com/document/doi/10.3139/146.101735/html
Button zum nach oben scrollen