Startseite The running-in of amorphous hydrocarbon tribocoatings: a comparison between experiment and molecular dynamics simulations
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

The running-in of amorphous hydrocarbon tribocoatings: a comparison between experiment and molecular dynamics simulations

  • L. Pastewka , S. Moser , M. Moseler , B. Blug , S. Meier , T. Hollstein und P. Gumbsch
Veröffentlicht/Copyright: 11. Juni 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Amorphous hydrocarbon (a-C: H) films have enormous potential as low friction, wear resistant coatings. Here, we present a plasma assisted chemical vapour deposition process for a-C: H that exhibits growth rates of 100 nm min– 1 and higher. The tribological performance of the resulting a-C: H films has been studied experimentally by reciprocating sliding of an a-C: H-coated Si3N4 ball on an a-C: H-coated 100Cr6 steel substrate and by subsequent micro Raman spectroscopy of the wear track. Running-in of the coatings is observed and characterised by a rapid decrease in the friction coefficient accompanied by a significant increase in sp2 hybridisation in the wear track. In order to gain a deeper understanding of the underlying running-in mechanisms, the sliding of two a-C: H films under a load of 5 GPa has been studied by classical molecular dynamics employing a range-corrected Brenner bond-order potential. The simulations reproduce the experimental trends and explain the running-in by a combination of smoothing and chemical passivation of both tribosurfaces. Consequently, both mechanisms should be controlled in order to produce tribological coatings for applications with optimum energy-efficiency.


* Correspondence address, Prof Dr. Michael Moseler, Fraunhofer Institute for Mechanics of Materials, Wöhlerstraße 11, D-79108 Freiburg, Germany, Tel.: +49 761 5142 332, Fax: +49 761 5142 110, E-mail:

References

[1] J.Robertson: Mater. Sci. Eng. R.37 (2002) 129. DOI:10.1016/S0927-796X(02)00005-010.1016/S0927-796X(02)00005-0Suche in Google Scholar

[2] R.Hauert: Tribol. Int.37 (2004) 991. DOI:10.1016/j.triboint.2004.07.01710.1016/j.triboint.2004.07.017Suche in Google Scholar

[3] A.Mathews, S.S.Eskildsen: Diam. Relat. Mater.3 (1994) 902. doi:10.1016/0925-9635(94)90297-6.10.1016/0925-9635(94)90297-6Suche in Google Scholar

[4] C.P.O.Treutler: Surf. Coat. Technol.200 (2005) 1969. DOI:10.1016/j.surfcoat.2005.08.01210.1016/j.surfcoat.2005.08.012Suche in Google Scholar

[5] R.Gåhlin, M.Larsson, P.Hedenqvist: Wear249 (2001) 302. DOI:10.1016/S0043-1648(01)00559-210.1016/S0043-1648(01)00559-2Suche in Google Scholar

[6] J.Brand, G.Beckmann, B.Blug, G.Konrath, T.Hollstein: Ind. Lubr. Tribol.54 (2002) 291. doi:10.1108/0036879021069786810.1108/00368790210697868Suche in Google Scholar

[7] K.Enke: Thin Solid Films80 (1981) 227. DOI:10.1016/0040-6090(81)90226-110.1016/0040-6090(81)90226-1Suche in Google Scholar

[8] J.Fontaine, T.Le Mogne, J.L.Loubet, M.Belin: Thin Solid Films:482 (2005) 99. doi:10.1016/j.tsf.2004.11.12610.1016/j.tsf.2004.11.126Suche in Google Scholar

[9] S.Meier, M.König, C.Hormann: Surf. Coat. Technol.202 (2007) 1267. doi:10.1016/j.surfcoat.2007.07.05810.1016/j.surfcoat.2007.07.058Suche in Google Scholar

[10] S.Hyun, L.Pei, J.-F.Molinari, M.O.Robbins: Phys. Rev. E70 (2004) 026117. doi:10.1103/PhysRevE.70.02611710.1103/PhysRevE.70.026117Suche in Google Scholar PubMed

[11] A.C.Ferrari, J.Robertson: Phys. Rev. B61 (2000) 14095. DOI:10.1103/PhysRevB.61.1409510.1103/PhysRevB.61.14095Suche in Google Scholar

[12] M.P.Allen, D.J.Tildesley: Computer Simulation of Liquids, Oxford University Press, New York (1989).Suche in Google Scholar

[13] S.A.Adelman, J.D.Doll: J. Chem. Phys.64 (1976) 2375. DOI:10.1063/1.43252610.1063/1.432526Suche in Google Scholar

[14] W.Kohn, L.J.Sham: Phys. Rev.140 (1965) A1133. DOI:10.1103/PhysRev.140.A113310.1103/PhysRev.140.A1133Suche in Google Scholar

[15] D.Porezag, T.Frauenheim, T.Köhler: Phys. Rev. B51 (1995) 12947. doi:10.1103/PhysRevB.51.1294710.1103/PhysRevB.51.12947Suche in Google Scholar PubMed

[16] A.P.Horsfield, A.Bratkovsky, M.Fearn, D.G.Pettifor, M.Aoki: Phys. Rev. B53 (1996) 12694. doi:10.1103/PhysRevB.53.1269410.1103/PhysRevB.53.12694Suche in Google Scholar

[17] J.Tersoff: Phys. Rev. Lett.61 (1988) 2879. DOI:10.1103/PhysRevLett.61.287910.1103/PhysRevLett.61.2879Suche in Google Scholar PubMed

[18] G.C.Abell: Phys. Rev. B31 (1985) 6184. DOI:10.1103/PhysRevB.31.618410.1103/PhysRevB.31.6184Suche in Google Scholar

[19] D.W.Brenner, O.A.Shenderova, J.A.Harrison, S.J.Stuart, B.Ni, S.B.Sinnott: J. Phys.: Condens. Matter14 (2002) 783. DOI:10.1088/0953–8984/14/4/31210.1088/0953-8984/14/4/312Suche in Google Scholar

[20] D.W.Brenner: Phys. Rev. B42 (1990) 9458. DOI:10.1103/PhysRevB.42.945810.1103/PhysRevB.42.9458Suche in Google Scholar

[21] G.T.Gao, P.T.Mikulski, J.A.Harrison: J. Am. Chem. Soc.124 (2002) 7202. doi:10.1021/ja017861810.1021/ja0178618Suche in Google Scholar PubMed

[22] M.Moseler, P.Gumbsch, C.Casiraghi, A.C.Ferrari, J.Robertson: Science309 (2005) 1545. doi:10.1126/science.111457710.1126/science.1114577Suche in Google Scholar PubMed

[23] H.U.JägerK.Albe: J. Appl. Phys.88 (2000) 1129. DOI:10.1063/1.37378710.1063/1.373787Suche in Google Scholar

[24] M.Mrovec, M.Moseler, C.Elsässer, P.Gumbsch: Prog. Mater. Sci.52 (2007) 230. doi:10.1016/j.pmatsci.2006.10.01210.1016/j.pmatsci.2006.10.012Suche in Google Scholar

[25] D.Nguyen-Manh, D.G.Pettifor, D.J.H.Cockayne, M.Mrovec, S.Znam, V.Vitek: Bull. Mater. Sci.26 (2003) 43. DOI:10.1007/BF0271278610.1007/BF02712786Suche in Google Scholar

[26] M.I.Baskes, J.E.Angelo, C.L.Bisson: Modelling Simul. Mater. Sci. Eng.2 (1994) 505. doi:10.1088/0965-0393/2/3A/00610.1088/0965-0393/2/3A/006Suche in Google Scholar

[27] L.Pastewka, P.Pou, R.Pérez, P.Gumbsch, M.Moseler: accepted for publication in Phys. Rev. B.Suche in Google Scholar

[28] D.G.McCulloch, D.R.McKenzie, C.M.Goringe: Phys. Rev. B61 (2000) 2349. doi:10.1103/PhysRevB.61.234910.1103/PhysRevB.61.2349Suche in Google Scholar

[29] M.M.M.Bilek, D.R.McKenzie, D.G.McCulloch, C.M.Goringe: Phys. Rev. B62 (2000) 3071. doi:10.1103/PhysRevB.62.307110.1103/PhysRevB.62.3071Suche in Google Scholar

[30] M.A.L.Marques, H.E.Troiani, M.Miki-Yoshida, M.Jose-Yacaman, A.Rubio: Nano Letters4 (2004) 811. DOI:10.1021/nl049839t10.1021/nl049839tSuche in Google Scholar

[31] E.Gerde, M.Marder: Nature413 (2001) 285. DOI:10.1038/3509501810.1038/35095018Suche in Google Scholar PubMed

Received: 2008-4-3
Accepted: 2008-6-12
Published Online: 2013-06-11
Published in Print: 2008-10-01

© 2008, Carl Hanser Verlag, München

Artikel in diesem Heft

  1. Contents
  2. Contents
  3. Editorial
  4. To Professor Dr.-Ing. Karl-Heinz Zum Gahr on the occation of his 65th birthday
  5. Review
  6. Innovative materials for energy technology
  7. STAU – a review of the Karlsruhe weakest link finite element postprocessor with extensive capabilities
  8. Basic
  9. “Evolution” of microstructure in materials
  10. X-ray analysis of steep residual stress gradients: The 2θ-derivative method
  11. Investigation of surface fatigue of thermally sprayed micro- and nanocrystalline cylinder wall coatings by means of cavitation testing
  12. Thermal, mechanical and fretting fatigue of silicon nitride
  13. Effect of phase stability and composition on hydrogen diffusion in the binary systems Ti–Mo and Ti–V and related Ti-base alloys
  14. Determination of vK curves from lifetime tests with reloaded survivals
  15. Mechanical properties of a single gecko seta
  16. Applied
  17. Influence of Fe–F-co-doping on the dielectric properties of Ba0.6Sr0.4TiO3 thick-films
  18. Microstructural and acoustic damage analysis and finite element stress simulation of air plasma-sprayed thermal barrier coatings under thermal cycling
  19. The running-in of amorphous hydrocarbon tribocoatings: a comparison between experiment and molecular dynamics simulations
  20. Development of multifunctional thin films using high-throughput experimentation methods
  21. A transmission electron microscopy procedure for in-situ straining of miniature pseudoelastic NiTi specimens
  22. Recent developments in micro ceramic injection molding
  23. σ-phase morphologies and their effect on mechanical properties of duplex stainless steels
  24. Development of high power density cathode materials for Li-ion batteries
  25. Notification
  26. DGM News
Heruntergeladen am 1.10.2025 von https://www.degruyterbrill.com/document/doi/10.3139/146.101747/html
Button zum nach oben scrollen