Home Technology Perovskite-type hydrides – synthesis, structures and properties
Article
Licensed
Unlicensed Requires Authentication

Perovskite-type hydrides – synthesis, structures and properties

  • Kazutaka Ikeda , Toyoto Sato and Shin-ichi Orimo
Published/Copyright: May 23, 2013

Abstract

The present study gives an overview of the fundamental material properties of perovskite-type hydrides. Formation ability of the perovskite-type hydrides has been reasonably explained on the basis of the geometric restrictions on the composed ions using the Goldschmidt tolerance factor. Characteristic crystal structures and charge density maps of the perovskite-type hydrides without/with transition metals, such as NaMgH3/CaNiH3, were also examined in detail to clarify the relationship between the structures (atomic and electronic) and the hydriding properties.


* Correspondence address, Assistant Professor Kazutaka Ikeda, Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan, Tel.: +81 22 215 2094, Fax: +81 22 215 2091, E-mail:

References

[1] R.H.Mitchell: Perovskites, Modern and Ancient, Almaz Press Inc., Thunder Bay(2002).Search in Google Scholar

[2] F.S.Galasso: Structure and properties of inorganic solids, Pergamon Press, Oxford(1970)162.10.1016/B978-0-08-006873-2.50010-XSearch in Google Scholar

[3] B.L.Chamberl, P.S.Danielson: J. Solid State Chem.3(1971)243.10.1016/0022-4596(71)90035-1Search in Google Scholar

[4] H.Iwahara: Solid State Ionics52(1992)99.10.1016/0167-2738(92)90095-7Search in Google Scholar

[5] C.S.Nichols, D.R.Clarke: Acta Metall. Mater.39(1991)995.10.1016/0956-7151(91)90300-PSearch in Google Scholar

[6] C.P.Poole (Ed.): Handbook of superconductivity, Academic Press, San Diego(2000).Search in Google Scholar

[7] S.H.Wemple, M.Dimonenico, Jr., I.Camlibel: J. Phys. Chem. Solids29(1968)1797.10.1016/0022-3697(68)90164-9Search in Google Scholar

[8] A.F.Devonshire: Phil. Mag.40(1940)1040.10.1080/14786444908561372Search in Google Scholar

[9] X.Guo, J.Qi, K.Sakurai: Scripta Mater.48(2003)1185.10.1016/S1359-6462(02)00570-5Search in Google Scholar

[10] R.J.H.Voorhoeve: Advanced Materials in Catalysis, Academic Press, New York(1977)129.10.1016/B978-0-12-147450-8.50010-1Search in Google Scholar

[11] C.E.Messer, J.C.Eastman, R.G.Mers, A.J.Maeland: Inorg. Chem.3(1964)776.10.1021/ic50015a042Search in Google Scholar

[12] C.E.Messer, K.Hardcastle: Inorg. Chem.3(1964)1327.10.1021/ic50019a031Search in Google Scholar

[13] H.Kohlmann, K.Yvon: J. Alloys Compd.299(2000)L16.10.1016/S0925-8388(99)00818-XSearch in Google Scholar

[14] S.Ono, H.Hayakawa, D.Tsubone: J. Ceram. Soc. Jpn.86(1978)388.10.2109/jcersj1950.86.997_388Search in Google Scholar

[15] E.RönnebroD.Noréus, K.Kadir, A.Reiser, B.Bogdanovič: J. Alloys Compd.299(2000)101.10.1016/S0925-8388(99)00665-9Search in Google Scholar

[16] A.Bouamrane, J.P.Laval, J.P.Soulie, J.P.Bastide: Mater. Res. Bull.35(2000)545.10.1016/S0025-5408(00)00249-XSearch in Google Scholar

[17] K.Ikeda, Y.Kogure, Y.Nakamori, S.Orimo: Scripta Mater.53(2005)319.10.1016/j.scriptamat.2005.04.010Search in Google Scholar

[18] K.Ikeda, Y.Kogure, Y.Nakamori, S.Orimo: Prog. Solid State Chem.35(2007)329.10.1016/j.progsolidstchem.2007.01.005Search in Google Scholar

[19] J.P.Bastide, A.Bouamrane, P.Claudy, J.M.Letoffe: J. Less-Common Met.136(1987)L1.10.1016/0022-5088(87)90025-7Search in Google Scholar

[20] H.H.Park, M.Pezat, B.Darriet, P.Hagenmuller: Rev. Chim. Miner.24(1987)525.Search in Google Scholar

[21] R.Schumacher, A.Weiss: J. Less-Common Met.163(1990)179.10.1016/0022-5088(90)90098-5Search in Google Scholar

[22] F.Gingl, T.Vogt, E.Akiba, K.Yvon: J. Alloys Compd.282(1999)125.10.1016/S0925-8388(98)00834-2Search in Google Scholar

[23] B.Bertheville, P.Fischer, K.Yvon: J. Alloys Compd.330(2002)152.10.1016/S0925-8388(01)01631-0Search in Google Scholar

[24] H.H.Park, M.Pezat, B.Darriet: C.R. Acad. Sci. II:306(1988)963.Search in Google Scholar

[25] H.H.Park, M.Pezat, B.Darriet: Rev. Chim. Miner.23(1986)323.Search in Google Scholar

[26] P.Claudy, B.Bonnetot, J.P.Bastide, J.M.Letoffe: Mater. Res. Bull.17(1982)1499.10.1016/0025-5408(82)90204-5Search in Google Scholar

[27] H.W.Brinks, B.C.Hauback, C.M.Jensen, R.Zidan: J. Alloys Compd.392(2005)27.10.1016/j.jallcom.2004.09.006Search in Google Scholar

[28] J.Graetz, Y.Lee, J.J.Reilly, S.Park, T.Vogt: Phys. Rev. B71(2005)184115.10.1103/PhysRevB.71.184115Search in Google Scholar

[29] J.P.Bastide, B.Bonnetot, J.M.Letoffe, P.Claudy: Mater. Res. Bull.16(1981)91.10.1016/0025-5408(81)90183-5Search in Google Scholar

[30] M.H.Sorby, H.W.Brinks, A.Fossdal, K.Thorshaug, B.C.Hauback: J. Alloys Compd.415(2006)284.10.1016/j.jallcom.2005.08.010Search in Google Scholar

[31] K.Ikeda, S.Kato, K.Ohoyama, Y.Nakamori, H.T.Takeshita, S.Orimo: Scripta Mater.55(2006)827.10.1016/j.scriptamat.2006.07.016Search in Google Scholar

[32] H.T.Takeshita, T.Furuya, H.Miyamura, N.Kuriyama: Trans. Mater. Res. Soc. Jpn.29(2004)2049.Search in Google Scholar

[33] T.Sato, D.Noréus, H.Takeshita, U.Häussermann: J. Solid State Chem.178(2005)3381.10.1016/j.jssc.2005.08.026Search in Google Scholar

[34] W.Bronger, K.Jansen, P.Muller: J. Less-Common Met.161(1990)299.10.1016/0022-5088(90)90040-QSearch in Google Scholar

[35] W.Bronger, G.Ridder: J. Alloys Compd.210(1994)53.10.1016/0925-8388(94)90114-7Search in Google Scholar

[36] H.Kohlmann, H.E.Fischer, K.Yvon: Inorg. Chem.40(2001)2608.10.1021/ic001225dSearch in Google Scholar PubMed

[37] K.Ensslen, E.Bucher, H.Oesterreicher: J. Less-Common Met.92(1983)343.10.1016/0022-5088(83)90501-5Search in Google Scholar

[38] L.Pauling: The Nature of the Chemical Bond, Cornell University Press, Ithaca, New York(1960).Search in Google Scholar

[39] K.Yvon, P.Fischer, in: L.Schlapbach (Ed.), Topics in Applied Physics, Vol. 63, Hydrogen in Intermetallic Compounds I, Springer, Berlin(1988)87.10.1007/3540183337_11Search in Google Scholar

[40] S.Orimo, Y.Nakamori, J.R.Eliseo, A.Züttel, C.M.Jensen: Chem. Rev.107(2007)4111.10.1021/cr0501846Search in Google Scholar

[41] J.P.Soulie, G.Renaudin, R.Cerny, K.Yvon: J. Alloys Compd.346(2002)200.10.1016/S0925-8388(02)00521-2Search in Google Scholar

[42] H.Jacobs, R.Juza: Z. Anorg. Allg. Chem.391(1972)271.10.1002/zaac.19723910308Search in Google Scholar

[43] N.Sklar, B.Post: Inorg. Chem.6(1967)669.10.1021/ic50050a008Search in Google Scholar

[44] L.Schlapbach, A.Züttel: Nature414(2001)353.10.1038/35104634Search in Google Scholar PubMed

[45] K.Ohoyama, T.Kanouchi, K.Nemoto, M.Ohashi, T.Kajitani, Y.Yamaguchi: Jpn. J. Appl. Phys.37(1998)3319.10.1143/JJAP.37.3319Search in Google Scholar

[46] M.Takata, E.Nishibori, M.Sakata: Z. Kristallogr.216(2001)71.10.1524/zkri.216.2.71.20335Search in Google Scholar

[47] F.Izumi, T.Ikeda: Mater. Sci. Forum321(2000)198.10.4028/www.scientific.net/MSF.321-324.198Search in Google Scholar

[48] F.Izumi, R.A.Dilanian: Recent Res. Dev. Phys.3(2002)699.10.1155/S107379280220402XSearch in Google Scholar

[49] A.J.Maeland, W.D.Lahar: Z. Phys. Chem.179(1993)181.10.1524/zpch.1993.179.Part_1_2.181Search in Google Scholar

[50] G.G.Libowitz: The solid-state chemistry of binary metal hydrides, W.A. Benjamin Inc, New York(1965).Search in Google Scholar

[51] R.D.Shannon: Acta Crystallogr. A32(1976)751.10.1107/S0567739476001551Search in Google Scholar

[52] K.Ikeda, Y.Nakamori, S.Orimo: Acta Mater.53(2005)3453.10.1016/j.scriptamat.2005.04.010Search in Google Scholar

[53] K.Ikeda, S.Kato, Y.Shinzato, N.Okuda, Y.Nakamori, A.Kitano, H.Yukawa, M.Morinaga, S.Orimo: J. Alloys Compd.446–447(2007)165.10.1016/j.jallcom.2007.03.093Search in Google Scholar

[54] D.K.Blat, N.E.Zein, V.I.Zinenko: J. Phys.3(1991)5515.10.1088/0953-8984/3/29/006Search in Google Scholar

[55] T.Noritake, M.Aoki, S.Towata, Y.Seno, Y.Hirose, E.Nishibori, M.Takata, M.Sakata: Appl. Phys. Lett.81(2002)2008.10.1063/1.1506007Search in Google Scholar

[56] K.Komiya, Y.Takahashi, Y.Shinzato, H.Yukawa, M.Morinaga and S.Orimo: Proc. International Hydrogen Energy Congress & Exhibition IHEC2005, Istanbul, Turkey (in press).Search in Google Scholar

[57] B.Huang, F.Bonhomme, P.Selvam, K.Yvon, P.Fischer: J. Less-Common Met.171(1991)301.10.1016/0022-5088(91)90152-TSearch in Google Scholar

[58] A.E.Gridani, M.E.Mouhtadi: Chem. Phys.252(2000)1.10.1016/S0301-0104(99)00333-XSearch in Google Scholar

[59] M.Takata, E.Nishibori, M.Sakata: Z. Kristallogr.216(2001)71.10.1524/zkri.216.2.71.20335Search in Google Scholar

[60] J.F.Stampfer, C.E.Holley, T.F.Suttle: J. Amer. Chem. Soc.82(1960)3504.10.1021/ja01499a006Search in Google Scholar

[61] M.D.Banus, J.J.McSharry, E.A.Sullivan: J. Amer. Chem. Soc.77(1955)2007.10.1021/ja01612a089Search in Google Scholar

[62] CRC Handbook of Chemistry and Physics, 3rd electronic ed. (http://www.knovel.com).Search in Google Scholar

[63] M.Matsuo, Y.Nakamori, S.Orimo, H.Maekawa, H.Takamura: Appl. Phys. Lett.91(2007)224103.10.1063/1.2817934Search in Google Scholar

[64] Y.Inaguma, C.Liquan, M.Itoh, T.Nakamura, T.Uchida, H.Ikuta, M.Wakihara: Solid State Commun.86(1993)689.10.1016/0038-1098(93)90841-ASearch in Google Scholar

[65] K.Poeppelmeier: Science295(2002)1849.10.1126/science.1070030Search in Google Scholar PubMed

[66] A.W.Overhauser: Phys. Rev. B35(1987)411.10.1103/PhysRevB.35.411Search in Google Scholar PubMed

[67] N.W.Ashcroft: Phys. Rev. Lett.92(2004)187002.10.1103/PhysRevLett.92.187002Search in Google Scholar PubMed

[68] E.Orgaz, V.Mazel, M.Gupta: Phys Rev B54(1996)16124.10.1103/PhysRevB.54.16124Search in Google Scholar PubMed

Received: 2007-12-1
Accepted: 2008-2-29
Published Online: 2013-05-23
Published in Print: 2008-05-01

© 2008, Carl Hanser Verlag, München

Articles in the same Issue

  1. Contents
  2. Contents
  3. Editorial
  4. Prof. Dr. Reiner Kirchheim
  5. Review
  6. Laser-assisted atom probe tomography and nanosciences
  7. Heusler films and multilayers: X-ray resonant magnetic scattering and polarized neutron reflectivity studies on the relation between structure and magnetism
  8. Perovskite-type hydrides – synthesis, structures and properties
  9. Basic
  10. Interface width of immiscible layered elements
  11. The decomposition reaction of lithium amide studied by anelastic spectroscopy and thermogravimetry
  12. Migration of faceted high-angle grain boundaries in Zn
  13. EELS analysis of internal metal – oxide interfaces
  14. Effect of Chemical Confinement on the mechanical relaxation spectra of poly(ethene-co-methacrylic acid) copolymers
  15. Applied
  16. Properties of hydrogen absorption by nano-structured FeTi alloys
  17. A subnanoscale study of the nucleation, growth, and coarsening kinetics of Cu-rich precipitates in a multicomponent Fe – Cu based steel
  18. Hydrogen absorption in 3.1 nanometre sized palladium samples: does structure matter?
  19. Ultrasonic study of short-range hydrogen ordering in Pd-hydride
  20. Homogeneity of mechanically alloyed nano-crystalline Fe – Cu-powders
  21. Formation of nickel nanoparticles in nickel – ceramic anodes during operation of solid-oxide fuel cells
  22. Characterisation of complex hydrides synthesised or modified by ball milling
  23. On the small scale character of the stress and hydrogen concentration fields at the tip of an axial crack in steel pipeline: effect of hydrogen-induced softening on void growth
  24. Notifications
  25. DGM News
Downloaded on 17.2.2026 from https://www.degruyterbrill.com/document/doi/10.3139/146.101671/html
Scroll to top button