Home Practical aspects and implications of interfaces in glass-ceramics: a review
Article
Licensed
Unlicensed Requires Authentication

Practical aspects and implications of interfaces in glass-ceramics: a review

  • Mark J. Davis
Published/Copyright: June 11, 2013
Become an author with De Gruyter Brill

Abstract

Glass-ceramics, prepared from the crystallization of interface-free, homogeneous glass, offer a unique perspective to study the influence of interfaces owing to the controlled manner in which interfaces (grain boundaries) can be introduced into the material. This review begins by considering the kinetics of interface development, itself strongly influenced by surface energetics. We then take up mechanical properties, the increase of which over that of their glassy precursors remains a cornerstone of what makes glass-ceramics desirable. Here, the role of the interface, both between crystals and, in some cases, within crystals (e. g., twin planes), serve to provide multiple ways in which to produce tough and strong materials. Hermetic crystal – glass interfaces are probably the rule in most glass-ceramics, rather than the exception, and are well demonstrated by several systems. Crystal clamping – the process by which crystals surrounded by residual glass in a glass-ceramic undergo stress due to coefficient of thermal expansion mismatches or by the inability of the crystal to go through a polymorphic transition upon cooling – has now been demonstrated in a number of studies with calculated stresses reaching 1 GPa. Electrical property studies of multi-phase glass-ceramics have shown the wide variety of phenomena possible with these materials, although more detailed studies will be necessary to fully understand the complex interplay between crystals, grain boundaries, space-charge regions, and residual glass. Light scattering is one of the more important implications of interfaces in glass-ceramics and quantitative approaches are more and more used to characterize this often unwanted feature. Concluding this review, we attempt to address four key questions that seek to extract those features of interfaces in glass-ceramics that have been application-enabling, require additional understanding and, finally, which might point a way towards new applications in the future.


* Correspondence address, Dr. Mark J. Davis SCHOTT North America, Inc. 400 York Avenue, Duryea, PA, 18642, USA Tel.: +1 570 457 7485 Fax: +1 570 457 3438 E-mail:

References

[1] W.Holand, G.H.Beall: Glass-Ceramic Technology, The American Ceramic Society, Westerville (2002).Search in Google Scholar

[2] A.J.Marker, III, N.Neuroth, in: H.Bach, N.Neuroth (Eds.), The Properties of Optical Glass, Springer-Verlag, Berlin (1995) 1.Search in Google Scholar

[3] W.Pannhorst, in: H.Bach (Ed.), Low Thermal Expansion Glass Ceramics, Springer-Verlag, Berlin (1995) 107.Search in Google Scholar

[4] R.Muller, E.D.Zanotto, V.M.Fokin: J. Non-Cryst. Sol.274 (2000) 208.10.1016/S0022-3093(00)00214-3Search in Google Scholar

[5] K.H.Dalal, R.Raj: J. Amer. Ceram. Soc.64 (1981) 194.10.1111/j.1151-2916.1981.tb10267.xSearch in Google Scholar

[6] C.J.R.Gonzalez-Oliver, P.S.Johnson, P.F.James: J. Mater. Sci.14 (1979) 1159.10.1007/BF00561300Search in Google Scholar

[7] M.C.Weinberg, E.D.Zanotto: J. Non-Cryst. Sol.108 (1989) 99.10.1016/0022-3093(89)90337-2Search in Google Scholar

[8] J.Moller, J.Schmelzer, I.Avramov: Phys. Stat. Sol. B196 (1996) 49.10.1002/pssb.2221960107Search in Google Scholar

[9] J.W.P.Schmelzer, E.D.Zanotto, I.Avramov, V.M.Fokin: J. Non-Cryst. Sol.352 (2006) 434.10.1016/j.jnoncrysol.2006.01.016Search in Google Scholar

[10] V.M.Fokin, E.D.Zanotto, N.S.Yuritsyn, J.W.P.Schmelzer: J. Non-Cryst. Sol.352 (2006) 2681.10.1016/j.jnoncrysol.2006.02.074Search in Google Scholar

[11] L.Granasy, D.M.Herlach: J. Non-Cryst. Sol. 192 &193 (1995) 470.10.1016/0022-3093(95)00430-0Search in Google Scholar

[12] L.Granasy, P.F.James: Proc. Roy. Soc. Lond. Ser. A454 (1998) 1745.10.1098/rspa.1998.0230Search in Google Scholar

[13] J.W.Christian: The Theory of Transformations in Metals and Alloys, Pergamon, Oxford (1975).Search in Google Scholar

[14] M.J.Davis, P.D.Ihinger, A.C.Lasaga: J. Non-Cryst. Sol.219 (1997) 62.10.1016/S0022-3093(97)00252-4Search in Google Scholar

[15] D.R.Uhlmann: J. Non-Cryst. Sol. 38 &39 (1980) 693.10.1016/0022-3093(80)90517-7Search in Google Scholar

[16] R.J.Kirkpatrick: Amer. Min.60 (1975) 798.10.1055/s-1975-23934Search in Google Scholar

[17] S.Toschev, in: P.Hartman (Ed.), Crystal Growth: An Introduction, North-Holland (1973) 328.Search in Google Scholar

[18] D.A.Porter, K.E.Easterling: Phase Transformations in Metals and Alloys, Van Norstrand Reinhold (International), London (1981).Search in Google Scholar

[19] G.Lofgren: J. Geophys. Res.76 (1971) 5635.10.1029/JB076i023p05635Search in Google Scholar

[20] C.J.Allegre, A.Provost, C.Jaupart: Nature294 (1981).10.1038/294223a0Search in Google Scholar

[21] C.S.Haase, J.Chadam, D.Feinn, P.Ortoleva: Science209 (1980).10.1126/science.209.4453.272Search in Google Scholar

[22] A.F.Craievich, E.E.Zanotto, P.F.James: Bull. Mineral.106 (1983) 169.Search in Google Scholar

[23] G.H.Beall: Glass Sci. Tech.73 (2000) 3.Search in Google Scholar

[24] E.D.Zanotto, P.F.James: J. Non-Cryst. Sol.74 (1985) 373.10.1016/0022-3093(85)90080-8Search in Google Scholar

[25] M.L.F.Nascimento, L.A.Souza, E.B.Ferreira, E.D.Zanotto: J. Non-Cryst. Sol.351 (2005) 3296.10.1016/j.jnoncrysol.2005.08.013Search in Google Scholar

[26] R.Raj, C.K.Chyung: Act. Metall.29 (1981) 159.10.1016/0001-6160(81)90096-1Search in Google Scholar

[27] H.Bach (Ed.): Low Thermal Expansion Glass Ceramics, Springer-Verlag, Berlin (1995).Search in Google Scholar

[28] A.Suckow, P.Schlosser, H.Rupp, R.Bayer: Glass Tech.31 (1990) 160.Search in Google Scholar

[29] V.Maier, G.Mueller: J. Amer. Ceram. Soc.70 (1987) C176.10.1111/j.1151-2916.1987.tb05717.xSearch in Google Scholar

[30] J.E.Shelby, M.C.Nichols: J. Amer. Ceram. Soc.66 (1983) 200.10.1111/j.1151-2916.1983.tb10017.xSearch in Google Scholar

[31] G.H.Beall: Ann. Rev. Mat. Sci.22 (1992) 91.10.1146/annurev.ms.22.080192.000515Search in Google Scholar

[32] T.J.Headley, R.E.Loehman: J. Amer. Ceram. Soc.67 (1984) 620.10.1111/j.1151-2916.1984.tb19606.xSearch in Google Scholar

[33] G.H.Beall: J. Non-Cryst. Sol.129 (1991) 163.10.1016/0022-3093(91)90092-KSearch in Google Scholar

[34] D.G.Grossman, J.O.Isard: J. Mat. Sci.4 (1969) 1059.10.1007/BF00549844Search in Google Scholar

[35] D.McCauley, R.E.Newnham, C.A.Randall: J. Amer. Ceram. Soc.81 (1998) 979.10.1111/j.1151-2916.1998.tb02435.xSearch in Google Scholar

[36] S.Lynch, J.Shelby: J. Amer. Ceram. Soc.67 (1984) 424.10.1111/j.1151-2916.1984.tb19729.xSearch in Google Scholar

[37] L.A.Zevin, E.A.Levi, Z.G.Bessmertnaya: Inorg. Mat.13 (1977) 1511.Search in Google Scholar

[38] J.Selsing: J. Amer. Ceram. Soc.44 (1961) 419.10.1111/j.1151-2916.1961.tb15475.xSearch in Google Scholar

[39] V.R.Mastelaro, E.D.Zanotto: J. Non-Cryst. Sol.194 (1996) 297.10.1016/0022-3093(95)00509-9Search in Google Scholar

[40] V.R.Mastelaro, E.D.Zanotto: J. Non-Cryst. Sol.247 (1999) 79.10.1016/S0022-3093(99)00038-1Search in Google Scholar

[41] J.W.Zwanziger, et Al: J. Appl. Phys.99 (2006).10.1063/1.2191731Search in Google Scholar

[42] A.J.Moulson, J.M.Herbert: Electroceramics, Wiley, Sussex (2003).10.1002/0470867965Search in Google Scholar

[43] M.M.Layton, J.W.Smith: J. Amer. Ceram. Soc.58 (1975) 435.10.1111/j.1151-2916.1975.tb19017.xSearch in Google Scholar

[44] N.Prasad, G.Subbanna, K.Varma: Ferroelect.281 (2002) 135.Search in Google Scholar

[45] J.Fu: J. Am. Ceram. Soc.80 (1997) 1901.10.1111/j.1151-2916.1997.tb03070.xSearch in Google Scholar

[46] A.Halliyal, A.S.Bhalla, R.E.Newnham, L.E.Cross, in: M.H.Lewis (Ed.), Glass and Glass-ceramics, Chapman and Hall, London (1989) 273.Search in Google Scholar

[47] A.Dan, T.Kundu, B.Satpati, P.Satyam, D.Chakravorty: Ferroelect.306 (2004) 95.10.1080/00150190490458437Search in Google Scholar

[48] B.N.Pal, T.K.Kundu, S.Banerjee, D.Chakravorty: J. Appl. Phys.93 (2003) 4201.10.1063/1.1559427Search in Google Scholar

[49] P.W.McMillan: Glass-Ceramics, Academic Press, London (1979).Search in Google Scholar

[50] B.A.Boukamp, M.T.N.Pham, D.H.A.Blank, H.J.M.Bouwmeester: Solid State Ion.170 (2004) 239.10.1016/j.ssi.2004.03.005Search in Google Scholar

[51] J.Maier: Ber. der Bunsen-Gesell.90 (1986) 26.10.1002/bbpc.19860900105Search in Google Scholar

[52] J.Maier: J. Eur. Ceram. Soc.19 (1999) 675.10.1016/S0955-2219(98)00295-7Search in Google Scholar

[53] J.Maier: Physical Chemistry of Ionic Materials, John Wiley and Sons, Ltd., West Sussex, England (2004).10.1002/0470020229Search in Google Scholar

[54] I.Lubomirsky, J.Fleig, J.Maier: J. Appl. Phys.92 (2002) 6819.10.1063/1.1516836Search in Google Scholar

[55] A.A.Campos-Junior, C.M.Rodrigues: J. Appl. Phys.100 (2006) 053709.10.1063/1.2345465Search in Google Scholar

[56] N.Bonanos, B.C.H.Steele, E.P.Butler, in: E.Barsoukov, J.R.Macdonald (Eds.), Impedance Spectroscopy: Theory, Experiment, and Applications, Wiley-Interscience, Hoboken, New Jersey (2005) 205.10.1002/0471716243.ch4Search in Google Scholar

[57] D.G.Grossman, J.O.Isard: J. Phys. D3 (1970) 1058.10.1088/0022-3727/3/7/309Search in Google Scholar

[58] N.S.Prasad, K.B.R.Varma: Mat. Sci. Eng. B90 (2002) 246.10.1016/S0921-5107(01)00919-9Search in Google Scholar

[59] G.S.Murugan, K.B.R.Varma: J. Non-Cryst. Sol.279 (2001) 1.10.1016/S0022-3093(00)00404-XSearch in Google Scholar

[60] J.J.Shyu, J.R.Wang: J. Amer. Ceram. Soc.83 (2000) 3135.10.1111/j.1151-2916.2000.tb01694.xSearch in Google Scholar

[61] M.V.Shankar, K.B.R.Varma: J. Non-Cryst. Sol.226 (1998) 145.10.1016/S0022-3093(97)00490-0Search in Google Scholar

[62] G.S.Murugan, K.B.R.Varma: J. Electroceram.8 (2002) 37.10.1023/A:1015547202006Search in Google Scholar

[63] E.C.Subbarao: Coll. Surf. A133 (1998) 3.10.1016/S0927-7757(97)00104-0Search in Google Scholar

[64] R.E.Newnham: Properties of Materials: Anisotropy, Symmetry, Structure, Oxford University Press, Oxford (2005).Search in Google Scholar

[65] M.J.Davis, P.Vullo, I.Mitra, P.Blaum, K.-A.Gudgel, N.J.Donnelly, C.A.Randall: in preparation (2007).Search in Google Scholar

[66] A.Halliyal, A.S.Bhalla, R.E.Newnham, L.E.Cross: Ferroelect.38 (1981) 781.10.1080/00150198108209537Search in Google Scholar

[67] D.P.BirnieIII, M.C.Weinberg: J. Non-Cryst. Sol.221 (1997) 1.10.1016/S0022-3093(97)00309-8Search in Google Scholar

[68] J.A.Sekhar, S.H.Risbud: J. Non-Cryst. Sol.47 (1982) 363.10.1016/0022-3093(82)90212-5Search in Google Scholar

[69] T.R.Shrout, R.Eitel, C.Randall, in: N.Setter (Ed.), Piezoelectric Materials in Devices, EPFL Swiss Federal Institute of Technology, Lausanne (2002) 413.Search in Google Scholar

[70] M.J.Davis, in: F.Trager (Ed.), Springer Handbook of Lasers and Optics, Springer-Verlag (2007) 1310.Search in Google Scholar

[71] P.A.Tick, N.F.Borrelli, I.M.Reaney: Opt. Mat.15 (2000) 81.10.1016/S0925-3467(00)00017-3Search in Google Scholar

[72] M.Modest, F: Radiative Heat Transfer, McGraw-Hill, Inc., New York (1993).Search in Google Scholar

[73] R.Menzel: Photonics: Linear and Nonlinear Interactions of Laser Light and Matter, Springer, Berlin (2001).10.1007/978-3-662-04521-3Search in Google Scholar

[74] T.G.Mayerhofer, Z.Shen, R.Keding, J.L.Musfeldt: Phys. Rev. B71 (2005) 184116.10.1103/PhysRevB.71.184116Search in Google Scholar

[75] A.A.Cabral, V.M.Fokin, E.D.Zanotto, C.R.Chinaglia: Journal of Non-Crystalline Solids330 (2003) 174.10.1016/j.jnoncrysol.2003.08.046Search in Google Scholar

[76] R.Apetz, M.P.B.van Bruggen: J. Amer. Ceram. Soc.86 (2003) 480.10.1111/j.1151-2916.2003.tb03325.xSearch in Google Scholar

[77] Y.Takahashi, A.Iwasaki, Y.Benino, T.Fujiwara, T.Komatsu: J. Appl. Phys.41 (2002) 3771.10.1143/JJAP.41.3771Search in Google Scholar

[78] S.K.Kurtz, T.T.Perry: J. Appl. Phys.39 (1968) 3798.10.1063/1.1656857Search in Google Scholar

[79] D.A.Litton, S.H.Garofalini: J. Non-Cryst. Sol.217 (1997) 250.10.1016/S0022-3093(97)00107-5Search in Google Scholar

[80] S.H.Garofalini: J. Amer. Ceram. Soc.67 (1984) 133.10.1111/j.1151-2916.1984.tb09630.xSearch in Google Scholar

[81] S.D.Stookey: Ind. Engr. Chem.51 (1959) 805.10.1021/ie50595a022Search in Google Scholar

Received: 2007-4-9
Accepted: 2007-10-14
Published Online: 2013-06-11
Published in Print: 2008-01-01

© 2008, Carl Hanser Verlag, München

Articles in the same Issue

  1. Contents
  2. Contents
  3. Editorial
  4. Prof. Dr.-Ing. habil. Dr.-Ing. E. h. Werner Schatt zum 85. Geburtstag
  5. Basic
  6. In-situ reaction synthesis and decomposition of Ta2AlC
  7. A new theoretical equation for temperature dependent self-diffusion coefficients of pure liquid metals
  8. Thermodynamic characterization of liquid alloys with demixing tendency: Bi–Ga
  9. Space charge effects in confined ceramic systems
  10. Solute transport and phase composition in an Al–Mg–Si alloy solidified under conditions of forced flow
  11. Evidence of α → ω phase transition in titanium after high pressure torsion
  12. Thermodynamic properties and elastic constants of Nd–Mg intermetallics: a molecular dynamics study
  13. Microstructure, texture and mechanical properties of the magnesium alloy AZ31 processed by ECAP
  14. Applied
  15. Effect of solidification microstructure and Ca additions on creep strength of magnesium alloy AZ91 processed by Thixomolding
  16. Magnetic hardening mechanism of PrCo5-based ribbons with C addition prepared by melt spinning
  17. Studies on the exchange and dipolar couplings in Nd2Fe14B/α-Fe
  18. Microstructural characteristics and elevated temperature wear of Ti-11Si-16Al alloy
  19. Nickel coating on some organic and carbon fibres by chemical plating
  20. Wear and corrosion properties of nanocrystalline coatings on stainless steel produced by plasma electrolytic nitrocarburizing
  21. The characterisation of microstructural changes in rapidly solidified Al–Fe alloys through measurement of their electrical resistance
  22. Solid inclusion cakes formed during pressure filtration tests of liquid aluminum alloys
  23. Performance of Ni/YSZ cermet cathode prepared by mechanical alloying for high temperature electrolysis of water vapor (steam): effect of anode and cathode thicknesses on the efficiency of hydrogen production
  24. Review
  25. Practical aspects and implications of interfaces in glass-ceramics: a review
  26. Notifications
  27. DGM News
Downloaded on 7.9.2025 from https://www.degruyterbrill.com/document/doi/10.3139/146.101599/html?lang=en&srsltid=AfmBOoqwIOsskBhfxweprq_MzrHndLRw2CtCkxe5jGMw-3QUtPfP_BFK
Scroll to top button