Startseite Modelling of the β → α + β transformation in a metastable β Ti alloy based on the growth kinetics and the morphology of the α plates
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Modelling of the β → α + β transformation in a metastable β Ti alloy based on the growth kinetics and the morphology of the α plates

  • Stefan M. C. van Bohemen , Menno van der Laars , Jilt Sietsma und Sybrand van der Zwaag
Veröffentlicht/Copyright: 23. Mai 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The kinetics of the isothermal β → α + β transformation in a metastable β titanium alloy has been studied by dilatometry. Based on thermodynamic aspects, the volume diffusion of Mo in the titanium matrix ahead of the interface, the interface mobility, and the morphology of the primary α plates, a transformation model is developed, which incorporates mixed-mode behaviour of the transformation in the initial stage. Fraction curves are calculated based on the simulated growth of a typical α plate within the β phase having a volume determined from the nucleus density. For comparison, fraction curves are calculated using a three-dimensional model of the β grain in which a number of plates are simulated to grow with purely diffusion-controlled kinetics. It is shown that the calculated growth rate with the mixed-mode transformation model gives a better representation of the growth rate at the start of the transformation than the purely diffusion-controlled model.


* Correspondence address, Dr. Stefan M. C. van Bohemen, Delft University of Technology, Dept. of Materials Science and Engineering, Mekelweg 2, NL-2628 CD Delft, The Netherlands, Tel.: +31 15 278 4984, Fax: +31 15 278 6730, E-mail:

References

[1] R.R.Boyer: Beta titanium alloys in 19909s, TMS, Warrendale, PA, 1997.Suche in Google Scholar

[2] G.Lütjering: Mater. Sci. Eng. A263 (1999) 117.10.1016/S0921-5093(98)01169-1Suche in Google Scholar

[3] S.Ankem, C.A.Greene: Mater. Sci. Eng. A263 (1999) 127.10.1016/S0921-5093(98)01170-8Suche in Google Scholar

[4] W.J.Evans: Mater. Sci. Eng. A243 (1998) 89.10.1016/S0921-5093(97)00784-3Suche in Google Scholar

[5] R.R.Boyer, H.J.Rack, V.Venkatesh: Mater. Sci. Eng. A243 (1998) 97.10.1016/S0921-5093(97)00785-5Suche in Google Scholar

[6] B.Appolaire, L.Hericher, E.Gautier: Acta Mater.53 (2005) 3001.10.1016/j.actamat.2005.03.014Suche in Google Scholar

[7] S.L.Semiatin, S.L.Knisley, P.N.Fagin, F.Zhang, D.R.Barker: Metall. Mater. Trans. A34 (2003) 2377.10.1007/s11661-003-0300-0Suche in Google Scholar

[8] I.Katzarov, S.Malinov, W.Sha: Metall. Mater. Trans. A33 (2002) 1027.10.1007/s11661-002-0204-4Suche in Google Scholar

[9] J.Sietsma, S.van der Zwaag: Acta Mater.52 (2004) 4143.10.1016/j.actamat.2004.05.027Suche in Google Scholar

[10] J.Sietsma, M.G.Mecozzi, S.M.C.van Bohemen, S.van der Zwaag: Int. J. Mat. Res.97 (2006) 357.Suche in Google Scholar

[11] M.G.Mecozzi, J.Sietsma, S.van der Zwaag: Metall. Mater. Trans. A36 (2005) 2327.10.1007/s11661-005-0105-4Suche in Google Scholar

[12] W.F.Gale, T.C.Totemeier: Smithells Metals Reference Book, Elsevier Butterworth-Heinemann, London, 2004.Suche in Google Scholar

[13] C.Zener: Trans. AIME167 (1946) 550.Suche in Google Scholar

[14] M.Hillert: Met. Trans. A6 (1974) 5.10.1007/BF02673664Suche in Google Scholar

[15] R.Trivedi: Met. Trans. A1 (1970) 921.10.1007/BF02811774Suche in Google Scholar

[16] W.A.Johnson, R.F.Mehl: TMS AIME135 (1939) 416.Suche in Google Scholar

[17] M.Avrami: J. Chem. Phys.7 (1939) 1103.10.1063/1.1750380Suche in Google Scholar

[18] Y.van Leeuwen, S.Vooijs, J.Sietsma, S.van der Zwaag: Metall. Mater. Trans. A29 (1998) 2925.10.1007/s11661-998-0199-6Suche in Google Scholar

[19] S.Azimzadeh, H.J.Rack: Metall. Mater. Trans. A29 (1998) 2455.10.1007/s11661-998-0217-8Suche in Google Scholar

[20] T.A.Kop, J.Sietsma, S.van der Zwaag: J. Mater. Sc.36 (2001) 519.10.1023/A:1004805402404Suche in Google Scholar

[21] H.I.Aaronson, W.B.Triplett, G.MAndes: TMS AIME209 (1957) 1227.Suche in Google Scholar

[22] S.M.C.van Bohemen, J.Sietsma, S.van der Zwaag: Phys. Rev. B74 (2006) 134114.10.1103/PhysRevB.74.134114Suche in Google Scholar

Received: 2006-10-20
Accepted: 2007-3-26
Published Online: 2013-05-23
Published in Print: 2007-06-01

© 2007, Carl Hanser Verlag, München

Artikel in diesem Heft

  1. Contents
  2. Contents
  3. Basic
  4. The effect of bismuth segregation on the faceting of Σ3 and Σ9 coincidence boundaries in copper bicrystals
  5. Viscosity measurement of liquid ternary Cu–Ni–Fe alloys by an oscillating cup viscometer and comparison with models
  6. Isothermal oxidation behavior of a precipitation-hardened Pt-base alloy with additions of Al, Cr and Ni
  7. Bismuth activity measurements and thermodynamic re-optimization of the Ni–Bi System
  8. Modelling of the β → α + β transformation in a metastable β Ti alloy based on the growth kinetics and the morphology of the α plates
  9. The microstructure of ball milled nanocrystalline vanadium; variation of the crystal imperfection and the lattice parameter
  10. Study of interfacial reactions between Sn–Ag–Cu alloys and Au substrate
  11. Applied
  12. On the precipitation processes in commercial QE22 magnesium alloy
  13. Cyclic deformation behavior of deep rolled as-quenched aluminium alloy AA6110 at elevated temperatures
  14. Effect of Ho additions on the microstructure and mechanical properties of Nb-22Ti-16Si-7Cr-3Al-3Ta-2Hf alloys
  15. Improved mechanical properties of the high pressure die casting alloy AlSi9Cu3(Fe)(Zn) as a result of the combination of natural and artificial ageing
  16. Effect of quenching temperature on the microstructure and mechanical properties of Fe–B–Ti alloy
  17. A kinetic study of nickel coating on boron nitride micro-particles
  18. Thermal diffusivity measurements of some industrially important alloys by a laser flash method
  19. Notifications
  20. DGM News
Heruntergeladen am 16.10.2025 von https://www.degruyterbrill.com/document/doi/10.3139/146.101503/html
Button zum nach oben scrollen