The microstructure of ball milled nanocrystalline vanadium; variation of the crystal imperfection and the lattice parameter
-
Peter Lamparter
Abstract
Nanocrystalline vanadium powders have been produced by ball milling in a planetary mill. The morphology of the powder particles has been investigated by scanning electron microscopy. Crystallite size (size of coherently diffracting domains) and lattice-strain variation (microstrain) have been determined from the analysis of the X-ray diffraction-line broadening using the established integral breadth Williamson – Hall and Fourier Warren – Averbach methods. Results obtained from transmission electron microscopy analysis have been compared with the X-ray diffraction results. Ball milling causes an increase in the particle size and a decrease in the grain (crystallite) size with increasing milling time, a lattice-strain variation, due to deformation-induced dislocations, that increases with milling time and deformation-induced stacking faults of density increasing with milling time. The lattice parameter of the vanadium powders, as deduced from the diffraction-peak positions, decreases upon milling linearly with the inverse of the grain size, which has been attributed to grain (crystallite)-boundary stress.
References
[1] H.Gleiter: Prog. Mater. Sci.33 (1989) 223.10.1016/0079-6425(89)90001-7Suche in Google Scholar
[2] C.Suryanarayana, C.C.Koch: Hyperfine Interactions130 (2000) 5.10.1023/A:1011026900989Suche in Google Scholar
[3] R.Birringer, H.Gleiter, in: R.W.Cahn (Ed.), Encyclopedia of Materials Science and Engineering, Suppl., Vol. 1, Pergamon Press, Oxford (1988) 339.Suche in Google Scholar
[4] E.Hellstern, H.J.Fecht, W.L.Johnson: J. Appl. Phys.65 (1989) 305.10.1063/1.342541Suche in Google Scholar
[5] H.J.Fecht, E.Hellstern, Z.Fu, W.L.Johnson: Met. Trans. A21 (1990) 2333.10.1007/BF02646980Suche in Google Scholar
[6] M.Jung: Dynamik und Löslichkeit von Wasserstoff in nanokristallinen Metallen. Ph.D. Thesis, Technische Universität Darmstadt, Germany (2002).Suche in Google Scholar
[7] Q.Wei, T.Jiao, K.T.Ramesh, E.Ma: Scripta Mater.50 (2004) 359.10.1016/j.scriptamat.2003.10.010Suche in Google Scholar
[8] I.Lucks, P.Lamparter, E.J.Mittemeijer: J. Appl. Cryst.37 (2004) 300.10.1107/S0021889804003140Suche in Google Scholar
[9] I.Lucks, P.Lamparter, E.J.Mittemeijer: Acta Mater.49 (2001) 2419.10.1016/S1359-6454(01)00154-9Suche in Google Scholar
[10] I.Lucks, P.Lamparter, E.J.Mittemeijer: Mater. Sci. Forum378–381 (2001) 451.Suche in Google Scholar
[11] I.Lucks, P.Lamparter, J.Xu, E.J.Mittemeijer: Mater. Sci. Forum443–444 (2004) 119.Suche in Google Scholar
[12] B.E.Warren: X-Ray Diffraction, Addison Wesley, Reading, MA, USA (1969).Suche in Google Scholar
[13] J.I.Langford, D.Louër: Rep. Prog. Phys.59 (1996) 131.10.1088/0034-4885/59/2/002Suche in Google Scholar
[14] R.L.Snyder, J.Fiala, J.Bunge (Eds.): Defect and Microstructure Analysis by Diffraction, University Press, Oxford (1999).Suche in Google Scholar
[15] E.J.Mittemeijer, P.Scardi (Eds.): Diffraction Analysis of the Microstructure of Materials, Springer Series in Materials Science Vol. 68, Springer-Verlag, Berlin, Heidelberg New York (2004).10.1007/978-3-662-06723-9Suche in Google Scholar
[16] G.K.Williamson, W.H.Hall: Acta Metall.1 (1953) 22.10.1016/0001-6160(53)90006-6Suche in Google Scholar
[17] B.E.Warren, B.L.Averbach: J. Appl. Phys.21 (1950) 595.10.1063/1.1699713Suche in Google Scholar
[18] B.E.Warren, B.L.Averbach: J. Appl. Phys.23 (1952) 497.10.1063/1.1702234Suche in Google Scholar
[19] R.Delhez, Th.H.de Keijser, E.J.Mittemeijer: Fresenius Z. Anal. Chem.312 (1982) 1.10.1007/BF00482725Suche in Google Scholar
[20] J.G.M.van Berkum, A.C.Vermeulen, R.Delhez, Th.H.de Keijser, E.J.Mittemeijer: Acta Cryst. A52 (1996) 730.10.1107/S0108767396005727Suche in Google Scholar
[21] A.Le Bail, in: R.L.Snyder, J.Fiala, J.Bunge (Eds.), Defect and Microstructure Analysis by Diffraction, University Press, Oxford (1999) 535.Suche in Google Scholar
[22] P.Scardi, M.Leoni: J. Appl. Cryst.32 (1999) 671.10.1107/S002188989900374XSuche in Google Scholar
[23] Philips Electronics N. V. The Netherlands, PHILIPS ProFit version 1.0c (1996).Suche in Google Scholar
[24] G.W.Brindley: Philos. Mag.36 (1945) 347.10.1080/14786444508520918Suche in Google Scholar
[25] P.Suortti: J. Appl. Cryst.5 (1972) 325.10.1107/S0021889872009707Suche in Google Scholar
[26] C.J.Sparks, K.Kumar, E.D.Specht, P.Zschack, G.E.Ice: Adv. X-ray Anal.35 (1991) 57.Suche in Google Scholar
[27] W.Pitschke, N.Mattern, H.Hermann: Powder Diffraction8 (1993) 223.10.1017/S0885715600019412Suche in Google Scholar
[28] A.R.Stokes, A.J.C.Wilson: Proc. Phys. Soc. Lond.56 (1944) 174.10.1088/0959-5309/56/3/303Suche in Google Scholar
[29] A.C.Vermeulen, R.Delhez, Th.H.de Keijser, E.J.Mittemeijer: J. Appl. Phys.77 (1995) 5026.10.1063/1.359312Suche in Google Scholar
[30] T.Unga´r, A.Borbe´ly: Appl. Phys. Lett.69 (1996) 3173.Suche in Google Scholar
[31] T.Unga´r, S.Ott, P.G.Sanders, A.Borbe´ly, J.R.Weertmann: Acta Mater.46 (1998) 3693.Suche in Google Scholar
[32] T.C.Bor, M.C.Huisman, J.-D.Kamminga, R.Delhez, E.J.Mittemeijer: Philos. Mag.83 (2003) 3327.10.1080/14786430310001605029Suche in Google Scholar
[33] C.C.Koch: Nanostruk. Mater.2 (1993) 109.10.1016/0965-9773(93)90016-5Suche in Google Scholar
[34] W.M.Kuschke, R.-M.Keller, P.Grahle, R.Mason, E.Arzt: Z. Metallkd.86 (1995) 804.Suche in Google Scholar
[35] I.Börner, J.Eckert: Mat. Sci. Eng. A226 (1997) 541.Suche in Google Scholar
[36] H.H.Tian, M.Atzmon: Acta Met.47 (1999) 1255.10.1016/S1359-6454(99)00002-6Suche in Google Scholar
[37] W.A.Rachinger: J. Sci. Instrum.25 (1948) 254.10.1088/0950-7671/25/7/125Suche in Google Scholar
[38] R.Delhez, E.J.Mittemeijer: J. Appl. Cryst.8 (1975) 609.10.1107/S0021889875011466Suche in Google Scholar
[39] A.R.Stokes: Proc. Roy. Soc. A61 (1948) 382.10.1088/0959-5309/61/4/311Suche in Google Scholar
[40] J.G.Mvan Berkum, A.C.Vermeulen, R.Delhez, Th.H.de Keijser, E.J.Mittemeijer: J. Appl. Cryst.27 (1994) 345.10.1107/S0021889893010568Suche in Google Scholar
[41] R.A.Young, R.J.Gerdes, A.J.C.Wilson: Acta Cryst.22 (1967) 155.10.1107/S0365110X67000271Suche in Google Scholar
[42] H.J.Fecht, E.Hellstern, Z.Fu, W.L.Johnson: Adv. Powder Metall.2 (1989) 111.Suche in Google Scholar
[43] J.Eckert, J.C.Holzer, C.E.Krill, W.L.Johnson: Mater. Sci. For.88–90 (1992) 505.Suche in Google Scholar
[44] A´.Re´ve´sz: J. Mater. Sci.40 (2005) 1643.10.1007/s10853-005-0664-1Suche in Google Scholar
[45] C.Krill, R.Birringer: Philos. Mag. A77 (1998) 621.10.1080/01418619808224072Suche in Google Scholar
[46] C.Krill, Haberkorn, R. Birringer: Handbook of Nanostructured Materials, Vol II, Academic Press (2000).Suche in Google Scholar
[47] G.K.Williamson, R.E.Smallman: Philos. Mag.1 (1956) 34.10.1080/14786435608238074Suche in Google Scholar
[48] R.E.Smallman, K.H.Westmacott: Philos. Mag.2 (1957) 669.10.1080/14786435708242709Suche in Google Scholar
[49] T.Unga´r, in: R.L.Snyder, J.Fiala, H.J.Bunge (Eds.), Defect and Microstructure Analysis by Diffraction, Oxford University Press, Oxford (1999) 165.Suche in Google Scholar
[50] Y.H.Zhao, H.W.Sheng, K.Lu: Acta. Mater.49 (2001) 365.10.1016/S1359-6454(00)00310-4Suche in Google Scholar
[51] Y.H.Zhao, K.Lu, K.Zhang: Phys. Rev. B66 (2002) 085404 1.10.1103/PhysRevB.66.085404Suche in Google Scholar
[52] NIST: Certificate SRM 640c, (2000).Suche in Google Scholar
[53] A.J.C.Wilson: Elements of X-Ray Crystallography, Addison-Wesley, Reading, MA, USA (1970).Suche in Google Scholar
[54] Natl. Bur. Stand. (U.S) Monogr.2558 (1971).Suche in Google Scholar
[55] C.N.J.Wagner, in: J.B.Cohen, J.E.Hilliard (Eds.), Local Atomic Arrangements Studied by X-ray Diffraction, Gordon and Breach, New York (1966) 217.Suche in Google Scholar
[56] C.R.Berry: Phys. Rev.88 (1952) 596.10.1103/PhysRev.88.596Suche in Google Scholar
[57] H.J.Wasserman, J.S.Vermaak: Surf. Sci.22 (1970) 164.10.1016/0039-6028(70)90031-2Suche in Google Scholar
[58] J.S.Vermaak, D.Kuhlmann-Wilsdorf: J. Phys. Chem.72 (1968) 4150.10.1021/j100858a034Suche in Google Scholar
[59] C.Solliard, M.Flueli: Surf. Sci.156 (1985) 487.10.1016/0039-6028(85)90610-7Suche in Google Scholar
[60] S.H.Tolbert, A.P.Alivisatos: Annu. Rev. Phys. Chem.46 (1995) 595.10.1146/annurev.pc.46.100195.003115Suche in Google Scholar PubMed
[61] R.Lamber, S.Wetjen, N.I.Jaeger: Phys. Rev. B51 (1994) 10968.10.1103/PhysRevB.51.10968Suche in Google Scholar
[62] K.Reimann, R.Würschum: J. Appl. Phys.81 (1997) 7186.10.1063/1.365307Suche in Google Scholar
[63] C.Herring, in: R.Gomer, C.S.Smith (Eds.), Structure and Properties of Solid Surfaces, University of Chicago Press, Chicago, ILL, USA (1953) 5.Suche in Google Scholar
[64] J.S.Vermaak, C.W.Mays, D.Kuhlmann-Wilsdorf: Surf. Sci.12 (1968) 128.10.1016/0039-6028(68)90118-0Suche in Google Scholar
[65] C.W.Mays, J.S.Vermaak, D.Kuhlmann-Wilsdorf: Surf. Sci.12 (1968) 134.10.1016/0039-6028(68)90119-2Suche in Google Scholar
[66] R.Defay, I.Prigogine, A.Bellemans: Surface Tension and Absorption, Longmans, London (1966) 1.Suche in Google Scholar
[67] J.-P.Borel, A.Cha∘telain: Surf. Sci.156 (1985) 572.10.1016/0039-6028(85)90226-2Suche in Google Scholar
[68] S.P.Timoshenko, J.N.Goodier: Theory of Elasticity, McGraw-Hill, New York (1987).Suche in Google Scholar
[69] W.F.Gale, T.C.Totemeier (Eds.): Smithells Metals Reference Book, 8th ed., Elsevier Butterworth-Heinemann, Oxford (2204) 15–3.Suche in Google Scholar
© 2007, Carl Hanser Verlag, München
Artikel in diesem Heft
- Contents
- Contents
- Basic
- The effect of bismuth segregation on the faceting of Σ3 and Σ9 coincidence boundaries in copper bicrystals
- Viscosity measurement of liquid ternary Cu–Ni–Fe alloys by an oscillating cup viscometer and comparison with models
- Isothermal oxidation behavior of a precipitation-hardened Pt-base alloy with additions of Al, Cr and Ni
- Bismuth activity measurements and thermodynamic re-optimization of the Ni–Bi System
- Modelling of the β → α + β transformation in a metastable β Ti alloy based on the growth kinetics and the morphology of the α plates
- The microstructure of ball milled nanocrystalline vanadium; variation of the crystal imperfection and the lattice parameter
- Study of interfacial reactions between Sn–Ag–Cu alloys and Au substrate
- Applied
- On the precipitation processes in commercial QE22 magnesium alloy
- Cyclic deformation behavior of deep rolled as-quenched aluminium alloy AA6110 at elevated temperatures
- Effect of Ho additions on the microstructure and mechanical properties of Nb-22Ti-16Si-7Cr-3Al-3Ta-2Hf alloys
- Improved mechanical properties of the high pressure die casting alloy AlSi9Cu3(Fe)(Zn) as a result of the combination of natural and artificial ageing
- Effect of quenching temperature on the microstructure and mechanical properties of Fe–B–Ti alloy
- A kinetic study of nickel coating on boron nitride micro-particles
- Thermal diffusivity measurements of some industrially important alloys by a laser flash method
- Notifications
- DGM News
Artikel in diesem Heft
- Contents
- Contents
- Basic
- The effect of bismuth segregation on the faceting of Σ3 and Σ9 coincidence boundaries in copper bicrystals
- Viscosity measurement of liquid ternary Cu–Ni–Fe alloys by an oscillating cup viscometer and comparison with models
- Isothermal oxidation behavior of a precipitation-hardened Pt-base alloy with additions of Al, Cr and Ni
- Bismuth activity measurements and thermodynamic re-optimization of the Ni–Bi System
- Modelling of the β → α + β transformation in a metastable β Ti alloy based on the growth kinetics and the morphology of the α plates
- The microstructure of ball milled nanocrystalline vanadium; variation of the crystal imperfection and the lattice parameter
- Study of interfacial reactions between Sn–Ag–Cu alloys and Au substrate
- Applied
- On the precipitation processes in commercial QE22 magnesium alloy
- Cyclic deformation behavior of deep rolled as-quenched aluminium alloy AA6110 at elevated temperatures
- Effect of Ho additions on the microstructure and mechanical properties of Nb-22Ti-16Si-7Cr-3Al-3Ta-2Hf alloys
- Improved mechanical properties of the high pressure die casting alloy AlSi9Cu3(Fe)(Zn) as a result of the combination of natural and artificial ageing
- Effect of quenching temperature on the microstructure and mechanical properties of Fe–B–Ti alloy
- A kinetic study of nickel coating on boron nitride micro-particles
- Thermal diffusivity measurements of some industrially important alloys by a laser flash method
- Notifications
- DGM News