Startseite The microstructure of ball milled nanocrystalline vanadium; variation of the crystal imperfection and the lattice parameter
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

The microstructure of ball milled nanocrystalline vanadium; variation of the crystal imperfection and the lattice parameter

  • Peter Lamparter und Eric J. Mittemeijer
Veröffentlicht/Copyright: 23. Mai 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Nanocrystalline vanadium powders have been produced by ball milling in a planetary mill. The morphology of the powder particles has been investigated by scanning electron microscopy. Crystallite size (size of coherently diffracting domains) and lattice-strain variation (microstrain) have been determined from the analysis of the X-ray diffraction-line broadening using the established integral breadth Williamson – Hall and Fourier Warren – Averbach methods. Results obtained from transmission electron microscopy analysis have been compared with the X-ray diffraction results. Ball milling causes an increase in the particle size and a decrease in the grain (crystallite) size with increasing milling time, a lattice-strain variation, due to deformation-induced dislocations, that increases with milling time and deformation-induced stacking faults of density increasing with milling time. The lattice parameter of the vanadium powders, as deduced from the diffraction-peak positions, decreases upon milling linearly with the inverse of the grain size, which has been attributed to grain (crystallite)-boundary stress.


* Correspondence address, Dr. Peter Lamparter, Max Planck Institute for Metals Research, Heisenbergstraße 3, D-70569 Stuttgart, Germany, Tel.: +49 711 698 3373, Fax: +49 722 698 3312, E-mail:

References

[1] H.Gleiter: Prog. Mater. Sci.33 (1989) 223.10.1016/0079-6425(89)90001-7Suche in Google Scholar

[2] C.Suryanarayana, C.C.Koch: Hyperfine Interactions130 (2000) 5.10.1023/A:1011026900989Suche in Google Scholar

[3] R.Birringer, H.Gleiter, in: R.W.Cahn (Ed.), Encyclopedia of Materials Science and Engineering, Suppl., Vol. 1, Pergamon Press, Oxford (1988) 339.Suche in Google Scholar

[4] E.Hellstern, H.J.Fecht, W.L.Johnson: J. Appl. Phys.65 (1989) 305.10.1063/1.342541Suche in Google Scholar

[5] H.J.Fecht, E.Hellstern, Z.Fu, W.L.Johnson: Met. Trans. A21 (1990) 2333.10.1007/BF02646980Suche in Google Scholar

[6] M.Jung: Dynamik und Löslichkeit von Wasserstoff in nanokristallinen Metallen. Ph.D. Thesis, Technische Universität Darmstadt, Germany (2002).Suche in Google Scholar

[7] Q.Wei, T.Jiao, K.T.Ramesh, E.Ma: Scripta Mater.50 (2004) 359.10.1016/j.scriptamat.2003.10.010Suche in Google Scholar

[8] I.Lucks, P.Lamparter, E.J.Mittemeijer: J. Appl. Cryst.37 (2004) 300.10.1107/S0021889804003140Suche in Google Scholar

[9] I.Lucks, P.Lamparter, E.J.Mittemeijer: Acta Mater.49 (2001) 2419.10.1016/S1359-6454(01)00154-9Suche in Google Scholar

[10] I.Lucks, P.Lamparter, E.J.Mittemeijer: Mater. Sci. Forum378–381 (2001) 451.Suche in Google Scholar

[11] I.Lucks, P.Lamparter, J.Xu, E.J.Mittemeijer: Mater. Sci. Forum443–444 (2004) 119.Suche in Google Scholar

[12] B.E.Warren: X-Ray Diffraction, Addison Wesley, Reading, MA, USA (1969).Suche in Google Scholar

[13] J.I.Langford, D.Louër: Rep. Prog. Phys.59 (1996) 131.10.1088/0034-4885/59/2/002Suche in Google Scholar

[14] R.L.Snyder, J.Fiala, J.Bunge (Eds.): Defect and Microstructure Analysis by Diffraction, University Press, Oxford (1999).Suche in Google Scholar

[15] E.J.Mittemeijer, P.Scardi (Eds.): Diffraction Analysis of the Microstructure of Materials, Springer Series in Materials Science Vol. 68, Springer-Verlag, Berlin, Heidelberg New York (2004).10.1007/978-3-662-06723-9Suche in Google Scholar

[16] G.K.Williamson, W.H.Hall: Acta Metall.1 (1953) 22.10.1016/0001-6160(53)90006-6Suche in Google Scholar

[17] B.E.Warren, B.L.Averbach: J. Appl. Phys.21 (1950) 595.10.1063/1.1699713Suche in Google Scholar

[18] B.E.Warren, B.L.Averbach: J. Appl. Phys.23 (1952) 497.10.1063/1.1702234Suche in Google Scholar

[19] R.Delhez, Th.H.de Keijser, E.J.Mittemeijer: Fresenius Z. Anal. Chem.312 (1982) 1.10.1007/BF00482725Suche in Google Scholar

[20] J.G.M.van Berkum, A.C.Vermeulen, R.Delhez, Th.H.de Keijser, E.J.Mittemeijer: Acta Cryst. A52 (1996) 730.10.1107/S0108767396005727Suche in Google Scholar

[21] A.Le Bail, in: R.L.Snyder, J.Fiala, J.Bunge (Eds.), Defect and Microstructure Analysis by Diffraction, University Press, Oxford (1999) 535.Suche in Google Scholar

[22] P.Scardi, M.Leoni: J. Appl. Cryst.32 (1999) 671.10.1107/S002188989900374XSuche in Google Scholar

[23] Philips Electronics N. V. The Netherlands, PHILIPS ProFit version 1.0c (1996).Suche in Google Scholar

[24] G.W.Brindley: Philos. Mag.36 (1945) 347.10.1080/14786444508520918Suche in Google Scholar

[25] P.Suortti: J. Appl. Cryst.5 (1972) 325.10.1107/S0021889872009707Suche in Google Scholar

[26] C.J.Sparks, K.Kumar, E.D.Specht, P.Zschack, G.E.Ice: Adv. X-ray Anal.35 (1991) 57.Suche in Google Scholar

[27] W.Pitschke, N.Mattern, H.Hermann: Powder Diffraction8 (1993) 223.10.1017/S0885715600019412Suche in Google Scholar

[28] A.R.Stokes, A.J.C.Wilson: Proc. Phys. Soc. Lond.56 (1944) 174.10.1088/0959-5309/56/3/303Suche in Google Scholar

[29] A.C.Vermeulen, R.Delhez, Th.H.de Keijser, E.J.Mittemeijer: J. Appl. Phys.77 (1995) 5026.10.1063/1.359312Suche in Google Scholar

[30] T.Unga´r, A.Borbe´ly: Appl. Phys. Lett.69 (1996) 3173.Suche in Google Scholar

[31] T.Unga´r, S.Ott, P.G.Sanders, A.Borbe´ly, J.R.Weertmann: Acta Mater.46 (1998) 3693.Suche in Google Scholar

[32] T.C.Bor, M.C.Huisman, J.-D.Kamminga, R.Delhez, E.J.Mittemeijer: Philos. Mag.83 (2003) 3327.10.1080/14786430310001605029Suche in Google Scholar

[33] C.C.Koch: Nanostruk. Mater.2 (1993) 109.10.1016/0965-9773(93)90016-5Suche in Google Scholar

[34] W.M.Kuschke, R.-M.Keller, P.Grahle, R.Mason, E.Arzt: Z. Metallkd.86 (1995) 804.Suche in Google Scholar

[35] I.Börner, J.Eckert: Mat. Sci. Eng. A226 (1997) 541.Suche in Google Scholar

[36] H.H.Tian, M.Atzmon: Acta Met.47 (1999) 1255.10.1016/S1359-6454(99)00002-6Suche in Google Scholar

[37] W.A.Rachinger: J. Sci. Instrum.25 (1948) 254.10.1088/0950-7671/25/7/125Suche in Google Scholar

[38] R.Delhez, E.J.Mittemeijer: J. Appl. Cryst.8 (1975) 609.10.1107/S0021889875011466Suche in Google Scholar

[39] A.R.Stokes: Proc. Roy. Soc. A61 (1948) 382.10.1088/0959-5309/61/4/311Suche in Google Scholar

[40] J.G.Mvan Berkum, A.C.Vermeulen, R.Delhez, Th.H.de Keijser, E.J.Mittemeijer: J. Appl. Cryst.27 (1994) 345.10.1107/S0021889893010568Suche in Google Scholar

[41] R.A.Young, R.J.Gerdes, A.J.C.Wilson: Acta Cryst.22 (1967) 155.10.1107/S0365110X67000271Suche in Google Scholar

[42] H.J.Fecht, E.Hellstern, Z.Fu, W.L.Johnson: Adv. Powder Metall.2 (1989) 111.Suche in Google Scholar

[43] J.Eckert, J.C.Holzer, C.E.Krill, W.L.Johnson: Mater. Sci. For.88–90 (1992) 505.Suche in Google Scholar

[44] A´.Re´ve´sz: J. Mater. Sci.40 (2005) 1643.10.1007/s10853-005-0664-1Suche in Google Scholar

[45] C.Krill, R.Birringer: Philos. Mag. A77 (1998) 621.10.1080/01418619808224072Suche in Google Scholar

[46] C.Krill, Haberkorn, R. Birringer: Handbook of Nanostructured Materials, Vol II, Academic Press (2000).Suche in Google Scholar

[47] G.K.Williamson, R.E.Smallman: Philos. Mag.1 (1956) 34.10.1080/14786435608238074Suche in Google Scholar

[48] R.E.Smallman, K.H.Westmacott: Philos. Mag.2 (1957) 669.10.1080/14786435708242709Suche in Google Scholar

[49] T.Unga´r, in: R.L.Snyder, J.Fiala, H.J.Bunge (Eds.), Defect and Microstructure Analysis by Diffraction, Oxford University Press, Oxford (1999) 165.Suche in Google Scholar

[50] Y.H.Zhao, H.W.Sheng, K.Lu: Acta. Mater.49 (2001) 365.10.1016/S1359-6454(00)00310-4Suche in Google Scholar

[51] Y.H.Zhao, K.Lu, K.Zhang: Phys. Rev. B66 (2002) 085404 1.10.1103/PhysRevB.66.085404Suche in Google Scholar

[52] NIST: Certificate SRM 640c, (2000).Suche in Google Scholar

[53] A.J.C.Wilson: Elements of X-Ray Crystallography, Addison-Wesley, Reading, MA, USA (1970).Suche in Google Scholar

[54] Natl. Bur. Stand. (U.S) Monogr.2558 (1971).Suche in Google Scholar

[55] C.N.J.Wagner, in: J.B.Cohen, J.E.Hilliard (Eds.), Local Atomic Arrangements Studied by X-ray Diffraction, Gordon and Breach, New York (1966) 217.Suche in Google Scholar

[56] C.R.Berry: Phys. Rev.88 (1952) 596.10.1103/PhysRev.88.596Suche in Google Scholar

[57] H.J.Wasserman, J.S.Vermaak: Surf. Sci.22 (1970) 164.10.1016/0039-6028(70)90031-2Suche in Google Scholar

[58] J.S.Vermaak, D.Kuhlmann-Wilsdorf: J. Phys. Chem.72 (1968) 4150.10.1021/j100858a034Suche in Google Scholar

[59] C.Solliard, M.Flueli: Surf. Sci.156 (1985) 487.10.1016/0039-6028(85)90610-7Suche in Google Scholar

[60] S.H.Tolbert, A.P.Alivisatos: Annu. Rev. Phys. Chem.46 (1995) 595.10.1146/annurev.pc.46.100195.003115Suche in Google Scholar PubMed

[61] R.Lamber, S.Wetjen, N.I.Jaeger: Phys. Rev. B51 (1994) 10968.10.1103/PhysRevB.51.10968Suche in Google Scholar

[62] K.Reimann, R.Würschum: J. Appl. Phys.81 (1997) 7186.10.1063/1.365307Suche in Google Scholar

[63] C.Herring, in: R.Gomer, C.S.Smith (Eds.), Structure and Properties of Solid Surfaces, University of Chicago Press, Chicago, ILL, USA (1953) 5.Suche in Google Scholar

[64] J.S.Vermaak, C.W.Mays, D.Kuhlmann-Wilsdorf: Surf. Sci.12 (1968) 128.10.1016/0039-6028(68)90118-0Suche in Google Scholar

[65] C.W.Mays, J.S.Vermaak, D.Kuhlmann-Wilsdorf: Surf. Sci.12 (1968) 134.10.1016/0039-6028(68)90119-2Suche in Google Scholar

[66] R.Defay, I.Prigogine, A.Bellemans: Surface Tension and Absorption, Longmans, London (1966) 1.Suche in Google Scholar

[67] J.-P.Borel, A.Cha∘telain: Surf. Sci.156 (1985) 572.10.1016/0039-6028(85)90226-2Suche in Google Scholar

[68] S.P.Timoshenko, J.N.Goodier: Theory of Elasticity, McGraw-Hill, New York (1987).Suche in Google Scholar

[69] W.F.Gale, T.C.Totemeier (Eds.): Smithells Metals Reference Book, 8th ed., Elsevier Butterworth-Heinemann, Oxford (2204) 153.Suche in Google Scholar

Received: 2006-6-16
Accepted: 2007-3-2
Published Online: 2013-05-23
Published in Print: 2007-06-01

© 2007, Carl Hanser Verlag, München

Artikel in diesem Heft

  1. Contents
  2. Contents
  3. Basic
  4. The effect of bismuth segregation on the faceting of Σ3 and Σ9 coincidence boundaries in copper bicrystals
  5. Viscosity measurement of liquid ternary Cu–Ni–Fe alloys by an oscillating cup viscometer and comparison with models
  6. Isothermal oxidation behavior of a precipitation-hardened Pt-base alloy with additions of Al, Cr and Ni
  7. Bismuth activity measurements and thermodynamic re-optimization of the Ni–Bi System
  8. Modelling of the β → α + β transformation in a metastable β Ti alloy based on the growth kinetics and the morphology of the α plates
  9. The microstructure of ball milled nanocrystalline vanadium; variation of the crystal imperfection and the lattice parameter
  10. Study of interfacial reactions between Sn–Ag–Cu alloys and Au substrate
  11. Applied
  12. On the precipitation processes in commercial QE22 magnesium alloy
  13. Cyclic deformation behavior of deep rolled as-quenched aluminium alloy AA6110 at elevated temperatures
  14. Effect of Ho additions on the microstructure and mechanical properties of Nb-22Ti-16Si-7Cr-3Al-3Ta-2Hf alloys
  15. Improved mechanical properties of the high pressure die casting alloy AlSi9Cu3(Fe)(Zn) as a result of the combination of natural and artificial ageing
  16. Effect of quenching temperature on the microstructure and mechanical properties of Fe–B–Ti alloy
  17. A kinetic study of nickel coating on boron nitride micro-particles
  18. Thermal diffusivity measurements of some industrially important alloys by a laser flash method
  19. Notifications
  20. DGM News
Heruntergeladen am 16.10.2025 von https://www.degruyterbrill.com/document/doi/10.3139/146.101492/html
Button zum nach oben scrollen