Home Laser Interference Metallurgy – using interference as a tool for micro/nano structuring
Article
Licensed
Unlicensed Requires Authentication

Laser Interference Metallurgy – using interference as a tool for micro/nano structuring

  • Frank Mücklich , Andrés Lasagni and Claus Daniel
Published/Copyright: May 31, 2013
Become an author with De Gruyter Brill

Abstract

Interfering laser beams of a high-power pulsed laser provide the opportunity of applying a direct lateral interaction with the surface microstructure of metals in micro/nano-scale based on photo-thermal nature mechanisms. This “Laser interference metallurgy” allows the creation of periodic patterns of features with a well defined long-range order on metallic surfaces at the scale of typical microstructures (from the sub micrometer level up to micrometers). This technique is an approach to initiate metallurgical processes such as melting, recrystallization, recovery, and defect and phase formation in the lateral scale of the microstructure itself and with an additional long range order given by the interference periodicity. In this work, the laser interference theory is described and used to calculate multi-beam interference patterns. A method to calculate the numbers of laser beams as well as the geometrical arrangement of the beams to obtain a desired periodical pattern prior to experiments is presented. The formation of long-range-ordered intermetallic compounds as well as macroscopic and microscopic variations of mechanical properties on structured metallic thin films are presented as examples.


Dedicated to Professor Eckard Macherauch on the occasion of the 80th anniversary of his birth

* Correspondence address, Prof. Dr.-Ing. Frank MücklichFunctional Materials Lab., Dept. Materials Science, Saarland University, P.O. Box 151150, D-66041 Saarbrücken, Germany, Tel.: +496813022048, Fax: +496813024876, E-mail:

References

[1] P.B.Clapham, M.C.Hutley: Nature (1973) 281.10.1038/244281a0Search in Google Scholar

[2] S.J.Wilson, M.C.Hutley: Optica Acta29 (1982) 993.10.1080/713820946Search in Google Scholar

[3] S.Weiner, W.Traub, H.D.Wagner: J. Struct. Biol.126 (1999) 241.10.1006/jsbi.1999.4107Search in Google Scholar PubMed

[4] X.Xia: Adv. Mater.16 (2004) 1245.10.1002/adma.200400834Search in Google Scholar

[5] M.Geissler, X.Xia: Adv. Mater.16 (2004) 15, 1249.10.1002/adma.200400835Search in Google Scholar

[6] C.David, A.Souvorov: Review of Scientific Instruments70, no. 11 (1999) 4168.10.1063/1.1150046Search in Google Scholar

[7] B.H.Cumpston, S.P.Ananthavel, S.Barlow, D.L.Dyer, J.E.Ehrlich, L.L.Erskine, A.A.Heikal, S.M.Kuebler, I.-Y. S.Lee, D.McCord-Maughon, J.Qin, H.Rockel, M.Rumi, X.-LiWu, S.R.Marder, J.W.Perry: Nature398 (1999) 51.10.1038/17989Search in Google Scholar

[8] R.Jakubiak, T.J.Bunning, R.A.Vaia: Nanotechnology E-Bulletin, 1.1 (2004) 3.Search in Google Scholar

[9] F.Mücklich, A.Lasagni, C.Daniel: Intermetallics13 (2005) 437.10.1016/j.intermet.2004.07.005Search in Google Scholar

[10] A.Blatter, M.Maillat, S.M.Pimenov, G.A.Shafeev, A.V.Simakin: Trib. Lett.4 (1998) 237.10.1023/A:1019192230095Search in Google Scholar

[11] H.M.Phillips, D.L.Callahan, R.Sauerbrey, G.Szabó, Z.Bor: Appl. Phys. Lett.58 (1991) 2761.10.1063/1.104778Search in Google Scholar

[12] M.Heintze, P.V.Santos, C.E.Nebel, M.Stutzmann: Appl. Phys. Lett.64 (1994) 3148.10.1063/1.111347Search in Google Scholar

[13] M.K.Kelly, J.Rogg, C.E.Nebel, M.Stutzmann, S.Kátai: Phys. Stat. Sol. (a)166 (1998) 651.10.1002/(SICI)1521-396X(199804)166:2<651::AID-PSSA651>3.0.CO;2-PSearch in Google Scholar

[14] H.Fukumura, Y.Kohji, K.Nagasawa, H.Masuhara: J. Am. Chem. Soc.116 (1994) 10304.10.1021/ja00101a062Search in Google Scholar

[15] S.Shoji, S.Kawata: Appl. Phys. Lett.76 (2000) 2668.10.1063/1.126438Search in Google Scholar

[16] A.Lasagni, M.Seyler, C.Holzapfel, W.Maier, F.Mücklich: Adv. Mater.17 (2005) 2228.10.1002/adma.200402074Search in Google Scholar

[17] C.Daniel, F.Mücklich, Z.Liu: App. Surf. Sci.208–209 (2003) 317.10.1016/S0169-4332(02)01381-8Search in Google Scholar

[18] C.Daniel, F.Mücklich: Wear257 (2004) 34, 266.10.1016/j.wear.2003.12.011Search in Google Scholar

[19] S.M.Metev, V.P.Veiko: Laser-Assisted Micro-Technology, second edition, SpringerBerlin, Germany, 1998.10.1007/978-3-642-87271-6Search in Google Scholar

[20] A.Lasagni, C.Holzapfel, F.Mücklich: Adv. Eng. Mater.7 (2005) 6, 487.10.1002/adem.200400206Search in Google Scholar

[21] M.Mützel, U.Rasbach, D.Meschede, C.Burstedde, J.Braun, A.Kunoth, K.Peithmann, K.Buse: Appl. Phys. B77 (2003) 1.10.1007/s00340-003-1234-3Search in Google Scholar

[22] U.Drodofsky, J.Stuhler, T.Schulze, M.Drewsen, B.Brezger, T.Pfau, J.Mlynek: Appl. Phys. B65 (1997) 755.10.1007/s003400050342Search in Google Scholar

[23] A.Lasagni, C.Holzapfel, F.Mücklich, in: S.J.Bull, P.R.Chalker, S.Chen Chen, W.J.Meng, R.Maboudian (Eds.), Proc. Mat. Res. Soc. Symp.890–Y04, 02.1.Search in Google Scholar

[24] S.Lipson, H.Lipson, D.Tannhauser: Optik, 3rd edition, Springer, Germany, 1997, 171.10.1007/978-3-642-59053-5Search in Google Scholar

[25] A.Lasagni, F.Mücklich: Appl. Surf. Sci.240 (2005) 214.10.1016/j.apsusc.2004.06.143Search in Google Scholar

[26] A.Lasagni, F.Mücklich: Appl. Surf. Sci.247 (2005) 32.10.1016/j.apsusc.2005.01.063Search in Google Scholar

[27] A.Lasagni, C.Holzapfel, F.Mücklich: Appl. Surf. Sci. (accepted)Search in Google Scholar

[28] A.Lasagni, F.Mücklich: Prakt. Metallogr.43 (2006) 1, 16.Search in Google Scholar

[29] C.Daniel, A.Lasagni, F.Mücklich: Surf. and Coat. Technol.180–181 (2004) 478.10.1016/j.surfcoat.2003.10.091Search in Google Scholar

[30] X.K.Meng, H.Vehoff: J. Mater. Res.15 (2000) 2596.10.1557/JMR.2000.0371Search in Google Scholar

[31] Z.Liu, X.K.Meng, T.Recktenwald, F.Mücklich: Mat. Sci. Eng.A342 (2003) 101.Search in Google Scholar

[32] C.Daniel, F.Mücklich: App. Surf. Sci.242 (2005) 140.10.1016/j.apsusc.2004.08.008Search in Google Scholar

[33] S.Tamirisakandala, P.V.R.K.Yellapregada, S.C.Medeiros, W. G.Frazier, J.C.Malas, B.Dutta: Adv. Eng. Mater.5 (2003) 667.10.1002/adem.200300368Search in Google Scholar

[34] KW.LiuF.Mücklich, in: G.A.Nazri, M.Nazri, R.Young, P.Chen (Eds.), Mat. Res. Soc. Symp. Vol. 2003;753: BB6.5Search in Google Scholar

[35] I.Jäger, P.Fratzl: Biophys. J.79 (2000) 1737.10.1016/S0006-3495(00)76426-5Search in Google Scholar

[36] C.Daniel, T.J.Balk, T.Wübben, F.Mücklich: Adv. Eng. Mater.7 (2005) 9, 823.10.1002/adem.200500110Search in Google Scholar

Received: 2006-3-22
Accepted: 2006-7-6
Published Online: 2013-05-31
Published in Print: 2006-10-01

© 2006, Carl Hanser Verlag, München

Articles in the same Issue

  1. Contents
  2. Contents
  3. Editorial
  4. Herrn Prof. em. Dr. rer. nat. Dr.-Ing. E. h. mult. Prof. h. c. Dr. h. c. Eckard Macherauch zum 80. Geburtstag
  5. Basic
  6. Stability of residual stresses in longitudinally and transversely deep rolled sintered iron under quasistatic and cyclic loading
  7. Residual stresses in random-planar aluminium/Saffil® short-fibre composites deformed in different loading modes
  8. Thermal residual stress analysis in continuous Al2O3 fiber reinforced NiAl composites
  9. On the fatigue behavior of ultrafine-grained interstitial-free steel
  10. Laser Interference Metallurgy – using interference as a tool for micro/nano structuring
  11. On dynamic and static strain ageing in Cu-2at.% Mn polycrystals
  12. High thermal stability of mechanically-alloyed nanocrystalline Cu–Nb alloys
  13. Possibilities and limits in thermohydrogen processing of beta titanium alloy Timetal®10-2-3
  14. Applied
  15. Cube textured tapes for use in YBa2Cu3O7–δ-coated conductor applications
  16. Cavitation erosion of advanced ceramics in water
  17. Influence of tension–compression loading history on plastic deformation of Mg wrought alloy AZ31
  18. Microstructure and mechanical properties of the extruded Mg-alloys AZ31, AZ61, AZ80
  19. Mechanical properties and microstructural changes of ultrafine-grained AA6063T6 during high-cycle fatigue
  20. Analysis of failure behaviour of carbon/carbon composite made by chemical vapour infiltration considering fibre, matrix and interface properties
  21. Cooperating twin robots form a new X-ray diffractometer for stress analysis
  22. Grinding-induced microstructural gradients and residual stresses in the surface layers of carbon steel and pure tungsten
  23. Residual-stress-induced subsurface crack nucleation in titanium alloys
  24. Microstructure and fatigue strength of the roller-bearing steel 100Cr6 (SAE 52100) after two-step bainitisation and combined bainitic–martensitic heat treatment
  25. History
  26. Damage tolerance: fracture mechanics in design
  27. Description of flow curves over wide ranges of strain rate and temperature
  28. Mechanismen und Modellierung der Verformung und Schädigung keramischer Faserverbundwerkstoffe
  29. Notifications
  30. Personal
Downloaded on 7.9.2025 from https://www.degruyterbrill.com/document/doi/10.3139/146.101375/html?lang=en
Scroll to top button