Application of the new IAPWS Guideline on the fast and accurate calculation of steam and water properties with the Spline-Based Table Look-Up Method (SBTL) in RELAP-7
-
M. Kunick
, R. A. Berry , R. C. Martineau , H.-J. Kretzschmar und U. Gampe
Abstract
The numerical simulation of thermalhydraulic processes in nuclear power plants requires very accurate and extremely fast algorithms for calculating the thermophysical properties of water and steam. In order to provide such algorithms, the International Association for the Properties of Water and Steam (IAPWS) has adopted the new “IAPWS Guideline on the Fast Calculation of Steam and Water Properties with the Spline-Based Table Look-Up Method (SBTL)”. In this article, the SBTL method is applied to property functions of specific volume and specific internal energy (v,e) based on the scientific formulation IAPWS-95 and the latest IAPWS formulations for transport properties. From the newly generated SBTL functions, thermodynamic and transport properties as well as their derivatives and inverse functions are calculable in the fluid range of state for pressures up to 100 MPa and for temperatures up to 1273 K, including the metastable liquid and the metastable vapor regions. The SBTL functions reproduce the underlying formulations with an accuracy of 10–100 ppm and significantly reduced computing times. The SBTL method has been implemented into the nuclear reactor system safety analysis code RELAP-7 [2] to consider the real fluid behavior of water and steam in a novel 7-equation two-phase flow model.
Kurzfassung
Die numerische Simulation thermohydraulischer Prozesse in Kernkraftwerksanlagen erfordert sehr genaue und extrem schnelle Stoffwert-Berechnungsalgorithmen für Wasser und Wasserdampf. Zu diesem Zweck hat die International Association for the Properties of Water and Steam (IAPWS) die neue „IAPWS Guideline on the Fast Calculation of Steam and Water Properties with the Spline-Based Table Look-Up Method (SBTL)” [1] verabschiedet. In diesem Beitrag wird das SBTL Verfahren auf Stoffwertfunktionen von spezifischem Volumen und spezifischer innerer Energie (v,e) basierend auf der wissenschaftlichen Formulierung IAPWS95 und den neuesten IAPWS Standards für Transporteigenschaften angewendet. Mit den neuen SBTL Funktionen lassen sich die thermodynamischen Zustandsgrößen und Transporteigenschaften sowie deren Ableitungen und Umkehrfunktionen im fluiden Zustandsgebiet bei Drücken bis zu 100 MPa und Temperaturen bis zu 1273 K, inklusive der metastabilen Gebiete für überhitzte Flüssigkeit und unterkühltes Gas, berechnen. Die SBTL Funktionen geben die zugrundeliegenden Formulierungen mit einer Genauigkeit von 10–100 ppm und erheblich reduzierten Rechenzeiten wieder. Das SBTL Verfahren wurde in den zur Sicherheitsanalyse von Kernreaktorsystemen entwickelten Code RELAP-7 [2] implementiert um das reale Zustandsverhalten von Wasser und Wasserdampf in einem neuen 7-Gleichungsmodell für die Zweiphasenströmung zu berücksichtigen.
References
1 IAPWS: Guideline on the Fast Calculation of Steam and Water Properties with the Spline-Based Table Look-Up Method (SBTL) (2015), available at http://www.iapws.orgSuche in Google Scholar
2 Berry, R. A.; Zou, L.; Zhao, H.; Zhang, H.; Peterson, J. W.; Martineau, R. C.; Kadioglu, S. Y.; Andrs, D.: RELAP-7 Theory Manual, Idaho National Laboratory technical report INL/EXT-14–31366 (Revision 2) (2016)10.2172/1262488Suche in Google Scholar
3 IAPWS: Revised Release on the IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use (2014), available at http://www.iapws.orgSuche in Google Scholar
4 Wagner, W.; Pruß, A.: The IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use, J. Phys. Chem. Ref. Data31, 387–535 (2002) 10.1063/1.1461829Suche in Google Scholar
5 IAPWS: Revised Release on the IAPWS Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam (2007), available at http://www.iapws.orgSuche in Google Scholar
6 Wagner, W.; Cooper, J. R.; Dittmann, A.; Kijima, J.; Kretzschmar, H.-J.; Kruse, A.; Mareš, R.; Oguchi, K.; Sato, H.; Stöcker, I.; Šifner, O.; Takaishi, Y.; Tanishita, I.; Trübenbach, J.; Willkommen, Th.: The IAPWS Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam, J. Eng. Gas Turbines & Power122, 150–182 (2000) 10.1115/1.483186Suche in Google Scholar
7 IAPWS: Revised Supplementary Release on Backward Equations for Pressure as a Function of Enthalpy and Entropy p(h,s) for Regions 1 and 2 of the IAPWS Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam (2014), available at http://www.iapws.orgSuche in Google Scholar
8 IAPWS: Revised Supplementary Release on Backward Equations for the Functions T(p,h), v(p,h), and T(p,s), v(p,s) for Region 3 of the IAPWS Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam (2014), available at http://www.iapws.orgSuche in Google Scholar
9 IAPWS: Revised Supplementary Release on Backward Equations p(h,s) for Region 3, Equations as a Function of h and s for the Region Boundaries, and an Equation Tsat(h,s) for Region 4 of the IAPWS Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam (2014), available at http://www.iapws.orgSuche in Google Scholar
10 IAPWS: Revised Supplementary Release on Backward Equations for Specific Volume as a Function of Pressure and Temperature v(p,T) for Region 3 of the IAPWS Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam (2014), available at http://www.iapws.orgSuche in Google Scholar
11 Kunick, M.; Kretzschmar, H.-J.; Gampe, U.; di Mare, F.; Hrubý, J.; Duška, M.; Vinš, V.; Singh, A.; Miyagawa, K.; Weber, I.; Pawellek, R.; Novy, A.; Blangetti, F.; Wagner, W.; Lemmon, E. W.; Friend, D. G.; Harvey, A. H.: Fast Calculation of Steam and Water Properties with the Spline-Based Table Look-Up Method (SBTL), J. Eng. Gas Turbines & Power, in preparationSuche in Google Scholar
12 Kunick, M.: Fast Calculation of Thermophysical Properties in Extensive Process Simulations with the Spline-Based Table Look-Up Method (SBTL), VDI Fortschritt-Berichte, in preparationSuche in Google Scholar
13 Kunick, M.; Kretzschmar, H.-J.; di Mare, F.; Gampe, U.: CFD Analysis of Steam Turbines with the IAPWS Standard on the Spline-Based Table Look-Up Method (SBTL) for the Fast Calculation of Real Fluid Properties, ASME Turbo Expo 2015: Turbine Technical Conference and Exposition, Vol. 8: Microturbines, Turbochargers and Small Turbomachines; Steam Turbines, ISBN: 978-0-7918-5679-6 (2015)10.1115/GT2015-43984Suche in Google Scholar
14 Späth, H.: One Dimensional Spline Interpolation Algorithms, ISBN 1-56881-016-4, A K Peters (1995)10.1201/9781439864715Suche in Google Scholar
15 Späth, H.: Two Dimensional Spline Interpolation Algorithms, ISBN 156881017-2, A K Peters (1995)10.1201/9781439864715Suche in Google Scholar
16 IAPWS: Release on the IAPWS Formulation 2008 for the Viscosity of Ordinary Water Substance (2008), available at http://www.iapws.orgSuche in Google Scholar
17 IAPWS: Release on the IAPWS Formulation 2011 for the Thermal Conductivity of Ordinary Water Substance (2011), available at http://www.iapws.orgSuche in Google Scholar
18 Wagner, W.; Overhoff, U.: Extended IAPWS-IF97 Steam Tables, Springer-Verlag (2006)Suche in Google Scholar
19 Lemmon, E. W.; Huber, M. L.; McLinden, M. O.: NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties – REFPROP, National Institute of Standards and Technology, Standard Reference Data Program, Gaithersburg (2013)Suche in Google Scholar
20 Kunick, M.; Kretzschmar, H.-J.: FluidSplines – Software for Generating Spline Functions (2017), information available at http://www.thermodynamics-zittau.de10.51202/9783186618061-71Suche in Google Scholar
21 Gaston, D.; Newman, C.; Hansen, G.; Lebrun-Grandie, D.: “MOOSE: A parallel computational framework for coupled systems of nonlinear equations,” Nuclear Engineering and Design239, 1768–1778 (2009) 10.1016/j.nucengdes.2009.05.021Suche in Google Scholar
22 Berry, R. A.: Some Specific CASL Requirements of Advanced Multiphase Flow Simulation of Light Water Reactors, Idaho National Laboratory technical report INL/EXT-10-20529 (2010)Suche in Google Scholar
23 Berry, R. A.; Saurel, R.; Le Métayer, O.: “The discrete equation method (DEM) for fully compressible, two-phase flows in ducts of spatially varying cross-section,” Nuclear Engineering and Design240, 3797–3810 (2010) 10.1016/j.nucengdes.2010.08.003Suche in Google Scholar
24 Berry, R. A.: “A logical progression of steps for implementation and testing of the 7-equation, two-phase model into a computational framework,” Int. Conf. on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C2013), Sun Valley, ID, (American Nuclear Society, LaGrange Park, IL USA) (2013)Suche in Google Scholar
25 Berry, R. A.: Notes on Well-Posed Ensemble Averaged Conservation Equations for Multiphase, Multi-Component, and Multi-Material Flows, Idaho National Laboratory technical report INL/EXT-05–00516-modified (2005)Suche in Google Scholar
26 Berry, R. A.; Saurel, R.; Petitpas, F.; Daniel, E.; Le Métayer, O.; Gavrilyuk, S.; Dovetta, N.; Martineau, R. C.: Progress in the Development of Compressible, Multiphase Flow Modeling Capability for Nuclear Reactor Flow Applications, Idaho National Laboratory technical report INL/EXT-08-15002 (2008)Suche in Google Scholar
27 Saurel, R.; Petitpas, F.; Berry, R. A.: “Simple and efficient relaxation methods for interfaces separating compressible fluids, cavitating flows and shocks in multiphase mixtures,” J. of Computational Physics228, 1678–1712 (2009) 10.1016/j.jcp.2008.11.002Suche in Google Scholar
28 Le Métayer, O.; Massoni, J.; Saurel, R.: “Elaborating equations of state of a liquid and its vapor for two-phase flow models,” Int. J. of Thermal Sciences43, 265–276 (2004) 10.1016/j.ijthermalsci.2003.09.002Suche in Google Scholar
© 2017, Carl Hanser Verlag, München
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Summaries/Kurzfassungen
- Summaries
- Technical Contributions/Fachbeiträge
- SIMULATE-3 K coupled code applications
- Application of the new IAPWS Guideline on the fast and accurate calculation of steam and water properties with the Spline-Based Table Look-Up Method (SBTL) in RELAP-7
- Simulation of water hammer phenomena using the system code ATHLET
- New version of the reactor dynamics code DYN3D for Sodium cooled Fast Reactor analyses
- Sensitivity analysis for thermo-hydraulics model of a Westinghouse type PWR: verification of the simulation results
- Calculation of the fuel temperature coefficient of reactivity considering non-uniform radial temperature distribution in the fuel rod
- The effect of boron dilution transient on the VVER-1000 reactor core using MCNP and COBRA-EN codes
- Modelling of the spent fuel heat-up in the spent fuel pools using one-dimensional system codes and CFD codes
- Optimization and analysis of the effects of physical parameters in a TRIGA-ADSR
- A comparison study for mass attenuation coefficients of some amino acids using MCNP code
- Validation of radioactive isotope activity measurement in homogeneous waste drum using Monte Carlo codes
- Study of the response reduction of LiF:Mg, Ti dosimeter for high dose dosimetry
- Non-contact micro mass evaluation method using an X-ray microscope
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Summaries/Kurzfassungen
- Summaries
- Technical Contributions/Fachbeiträge
- SIMULATE-3 K coupled code applications
- Application of the new IAPWS Guideline on the fast and accurate calculation of steam and water properties with the Spline-Based Table Look-Up Method (SBTL) in RELAP-7
- Simulation of water hammer phenomena using the system code ATHLET
- New version of the reactor dynamics code DYN3D for Sodium cooled Fast Reactor analyses
- Sensitivity analysis for thermo-hydraulics model of a Westinghouse type PWR: verification of the simulation results
- Calculation of the fuel temperature coefficient of reactivity considering non-uniform radial temperature distribution in the fuel rod
- The effect of boron dilution transient on the VVER-1000 reactor core using MCNP and COBRA-EN codes
- Modelling of the spent fuel heat-up in the spent fuel pools using one-dimensional system codes and CFD codes
- Optimization and analysis of the effects of physical parameters in a TRIGA-ADSR
- A comparison study for mass attenuation coefficients of some amino acids using MCNP code
- Validation of radioactive isotope activity measurement in homogeneous waste drum using Monte Carlo codes
- Study of the response reduction of LiF:Mg, Ti dosimeter for high dose dosimetry
- Non-contact micro mass evaluation method using an X-ray microscope