SIMULATE-3 K coupled code applications
-
C. Jönsson
, G. Grandi and J. Judd
Abstract
This paper describes the coupled code system TRACE/SIMULATE-3 K/VIPRE and the application of this code system to the OECD PWR Main Steam Line Break. A short description is given for the application of the coupled system to analyze DNBR and the flexibility the system creates for the user. This includes the possibility to compare and evaluate the result with the TRACE/SIMULATE-3K (S3K) coupled code, the S3K standalone code (core calculation) as well as performing single-channel calculations with S3K and VIPRE. This is the typical separate-effect-analyses required for advanced calculations in order to develop methodologies to be used for safety analyses in general. The models and methods of the code systems are presented. The outline represents the analysis approach starting with the coupled code system, reactor and core model calculation (TRACE/S3K). This is followed by a more detailed core evaluation (S3K standalone) and finally a very detailed thermal-hydraulic investigation of the hot pin condition (VIPRE).
Kurzfassung
Die Anwendung des gekoppelten code systems TRACE/SIMULATE-3K/VIPRE zur Berechnung des OECD-PWR-Main-Steam-Line-Break-Benchmarks wird in diesem Beitrag beschrieben. Eine kurze Beschreibung der Anwendung des gekoppelten Systems bei Analysen von DNBR wird gegeben. Dabei wird insbesondere auf die Flexibilität, die das System für den Benutzer schafft, hingewiesen. So besteht die Möglichkeit, das Ergebnis mit Ergebnissen von Rechnungen mit dem TRACE/SIMULATE-3K (S3K) gekoppelten Code, dem S3K-Standalone-Code (Core-Berechnung) sowie mit Einkanalberechnungen mit S3K und VIPRE zu vergleichen und zu bewerten. Dies sind typische Einzeleffektanalysen, die bei fortschrittlichen Berechnungen zur Methodenentwicklung bei Sicherheitsanalysen notwendig sind. Im Beitrag werden die Modelle und Methoden der Code-Systeme vorgestellt. Auch der Analyseansatz aus gekoppelter Rechnung und separater Reaktor und Kernmodellberechnung (TRACE/S3K) wird beschrieben. Abschließend werden eine detaillierte Kernbewertung (S3K Standalone) und schließlich eine sehr detaillierte thermisch-hydraulische Untersuchung der Hot-Pin-Bedingung (VIPRE) vorgestellt.
References
1 Grandi, G.; Smith, K.: S3K Explicit Fuel Pin Modeling during RIA. Trans. Am. Nucl. Soc.96 (2007) 627Search in Google Scholar
2 Judd, J.; Grandi, G.: SIMULATE-3K Linkage with Reactor Systems Codes. NURETH-14, Toronto, Canada, September 25–30, 2011Search in Google Scholar
3 Belblidia, L. A.; Grandi, G. M.; Jönsson, C.: SIMULATE-3K Peach Bottom 2 Turbine Trip 2 Benchmark Calculations. Nuclear Science and Engineering148 (2004) 325–32610.13182/NSE04-A2461Search in Google Scholar
4 Nikitin, K.; Judd, J.; Grandi, G.: Peach Bottom 2 Turbine Trip 2 Simulation by TRACE/SIMULATE3-K Coupled Code. 2010 International Conference on the Physics of Reactors (2010) Pittsburgh, Pennsylvania, USASearch in Google Scholar
5 Nikitin, K.; Manera, A.; Ferroukhi, H.; Judd, J.; Grandi, G.: OECD/NEA Main Steam Line Break PWR Benchmark Simulation by TRACE/S3K Coupled Code. NURETH-14, Toronto, Canada, September 25–30, 2011Search in Google Scholar
6 Stewart, C. W.; et al.: VIPRE: a thermal-hydraulic code for reactor cores. Vol. 1–3 (Revision 3, August 1989) and Vol. 4 (April 1987), NP-2511-CCM-A, Electric Power Research Institute, Palo Alto, California, USASearch in Google Scholar
7 Rhodes, J. D.; et al.: CASMO-5 Development and Applications. PHYSOR2006, Vancouver, CanadaSearch in Google Scholar
8 Bahadir, T.; et al.: Studsvik's Next Generation Nodal Codes SIMULATE5. Advances in Nuclear Fuel Management IV (ANFM 2009), Hilton Head Island, USASearch in Google Scholar
9 Grandi, G.; Jönsson, C.; Moberg, L.: Validation of SIMULATE-3K against FIX-II transient dryout tests. NURETH-15, Pisa, Italy, 2013Search in Google Scholar
10 Division of safety Analysis: TRACE V5.0 Theory Manual. US NRC (2012)Search in Google Scholar
11 Nordic Nuclear Safety Research: RADDA – Comparison of Results of Three ATWS/ATWC Scenarios Simulator with the Help of POLCA-T and S3K/RELAP5. NKS-162, March 2008Search in Google Scholar
12 Jönsson, C.; Grandi, G.; Judd, J.: Severe Reactivity Initiated Accidents with SIMULATE-3K and SIMULATE-3K/RELAP5 in Forsmark-3 BWR. TopFuel (2010) Orlando, Florida, USASearch in Google Scholar
13 Judd, J.; Grandi, G.: A Best-estimate Coupled Code for Reactor Safety Analyses using SIMULATE-3K and RELAP5-3D, ANFM-IV, 2009, Hilton Head Island, South Carolina, USASearch in Google Scholar
14 Grandi, G.; Judd, J.: Detailed VIPRE Core Models from SIMULATE-3K. Proceedings of Advances in Nuclear Fuel Management 2015 (ANFM 2015), Hilton Head Island, SC, USASearch in Google Scholar
15 Grandi, G.; Judd, J.: Studsvik's Tools for the Analysis of Reactivity Transients. PHYSOR 2016, Sun Valley, Idaho, USASearch in Google Scholar
16 Ivanov, K.; et al.: Pressurized water reactor main steam line break benchmark: Volume I: Final specifications. NEA/NSC/DOC(99)8, Nuclear Energy Agency Nuclear Science Committee, 1999Search in Google Scholar
© 2017, Carl Hanser Verlag, München
Articles in the same Issue
- Contents/Inhalt
- Contents
- Summaries/Kurzfassungen
- Summaries
- Technical Contributions/Fachbeiträge
- SIMULATE-3 K coupled code applications
- Application of the new IAPWS Guideline on the fast and accurate calculation of steam and water properties with the Spline-Based Table Look-Up Method (SBTL) in RELAP-7
- Simulation of water hammer phenomena using the system code ATHLET
- New version of the reactor dynamics code DYN3D for Sodium cooled Fast Reactor analyses
- Sensitivity analysis for thermo-hydraulics model of a Westinghouse type PWR: verification of the simulation results
- Calculation of the fuel temperature coefficient of reactivity considering non-uniform radial temperature distribution in the fuel rod
- The effect of boron dilution transient on the VVER-1000 reactor core using MCNP and COBRA-EN codes
- Modelling of the spent fuel heat-up in the spent fuel pools using one-dimensional system codes and CFD codes
- Optimization and analysis of the effects of physical parameters in a TRIGA-ADSR
- A comparison study for mass attenuation coefficients of some amino acids using MCNP code
- Validation of radioactive isotope activity measurement in homogeneous waste drum using Monte Carlo codes
- Study of the response reduction of LiF:Mg, Ti dosimeter for high dose dosimetry
- Non-contact micro mass evaluation method using an X-ray microscope
Articles in the same Issue
- Contents/Inhalt
- Contents
- Summaries/Kurzfassungen
- Summaries
- Technical Contributions/Fachbeiträge
- SIMULATE-3 K coupled code applications
- Application of the new IAPWS Guideline on the fast and accurate calculation of steam and water properties with the Spline-Based Table Look-Up Method (SBTL) in RELAP-7
- Simulation of water hammer phenomena using the system code ATHLET
- New version of the reactor dynamics code DYN3D for Sodium cooled Fast Reactor analyses
- Sensitivity analysis for thermo-hydraulics model of a Westinghouse type PWR: verification of the simulation results
- Calculation of the fuel temperature coefficient of reactivity considering non-uniform radial temperature distribution in the fuel rod
- The effect of boron dilution transient on the VVER-1000 reactor core using MCNP and COBRA-EN codes
- Modelling of the spent fuel heat-up in the spent fuel pools using one-dimensional system codes and CFD codes
- Optimization and analysis of the effects of physical parameters in a TRIGA-ADSR
- A comparison study for mass attenuation coefficients of some amino acids using MCNP code
- Validation of radioactive isotope activity measurement in homogeneous waste drum using Monte Carlo codes
- Study of the response reduction of LiF:Mg, Ti dosimeter for high dose dosimetry
- Non-contact micro mass evaluation method using an X-ray microscope