Startseite RELAP5 investigation on subchannel flow instability
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

RELAP5 investigation on subchannel flow instability

  • S. Wang , B.-W. Yang , A. Liu und X. Liu
Veröffentlicht/Copyright: 11. Juni 2016
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Two-phase flow instability is a vitally important area of study for a large number of industrial systems. Density Wave Oscillation (DWO) is the most common type of flow instability caused by the change in flow rate or power in boiling systems. The code RELAP5 is used to simulate single channel, 2 × 2 subchannels, and 3 × 3 subchannels with typical BWR subchannel geometry. The onset of flow instability determinating criterion and the results of simulations are utilized to create a stable boundary. The stable boundary of a single channel is compared with those from results of other researchers. Some conclusions are made as follows. 3 × 3 subchannels are more stable than single channel and 2 × 2 subchannels. Open subchannels possess a larger stable region than close channels. The heating model is analyzed determining that asymmetrical heating has negative effect on stability as compared to symmetric heating. With the analysis of transit time, period and subcooling number, there is a positive linear relationship between the subcooling number and oscillation period.

Kurzfassung

Zweiphaseninstabilitäten ist in vielen technischen Systemen ein äußerst wichtiges Arbeitsthema. Dabei ist die wellenförmige Schwingung der Dichte der häufigste Typ der Strömungsinstabilität. Dieser wird entweder durch Änderungen der Strömungsrate oder der Leistung in siedenden Systemen hervorgerufen. Zur Untersuchung dieser Phänomene wurden typische Siedewasserunterkanalgeometrien (1 Kanal, 2 × 2 und 3 × 3-Unterkanalgeometrien) abgebildet und das Verhalten mit dem Programm RELAP5 berechnet. Daraus wurden für die verschiedenen Geometrien Kriterien zur Bestimmung des Beginns der Strömungsinstabilität abgleitetet. Diese wurden mit in der Literatur verfügbaren Daten verglichen. Die Ergebnisse zeigen, dass beim Vergleich der genannten Geometrien die 3 × 3-Unterkanalgeometrie die stabilsten Regionen zeigt und dass offene Unterkanäle stabilere Regionen erzeugen als geschlossene Kanäle. Asymmetrische Heizen der Kanäle erzeugt mehr Strömungsinstabilitäten als symmetrischen Heizen. Des Weiteren zeigt die Analyse von Übergangszeit, -periode und Unterkühlungszahl einen positiv linearen Zusammenhang zwischen der Unterkühlungszahl und der Oszillationsperiode.


* E-mail:

References

1 Ledinegg, M.: Instability of flow during natural and forced circulation. Die Waerme, 61 (1938) 891898Suche in Google Scholar

2 Ishii, M.; Zuber, N.: Thermally induced flow instabilities in two phase mixture. The 4th International Heat Transfer Conference, Paris, France, 197010.1615/IHTC4.630Suche in Google Scholar

3 Hamidouche, T.; Bousbia-salah, A.: RELAP5/3.2 assessment against low pressure onset of flow instability in parallel heated channels. Annals of Nuclear Energy33 (2006) 51052010.1016/j.anucene.2006.01.004Suche in Google Scholar

4 Ambrosini, W.; Ferreri, J. C.: Analysis of basic phenomena in boiling channel instabilities with different flow models and numerical schemes. The 14th International Conference on Nuclear Engineering (ICONE 14), Miami, USA, 12, 200610.1115/icone14-89863Suche in Google Scholar

5 Colombo, M.; Cammi, A.; Papini, D.; Ricotti, M. E.: RELAP5/MOD3.3 study on density wave instabilities in single channel and two parallel channels. Progress in Nuclear Energy56 (2012) 152310.1016/j.pnucene.2011.12.002Suche in Google Scholar

6 Kommer, E. M.: Numerical modeling of flow boiling instabilities using TRACE. Annals of Nuclear Energy76 (2015) 26327010.1016/j.anucene.2014.09.052Suche in Google Scholar

7 Boure, J. A.; Bergles, A. E.; Tong, L. S.: Review of two phase flow instability. Nuclear Engineering and Design25 (1973) 16519210.1016/0029-5493(73)90043-5Suche in Google Scholar

8 Kakac, S.; Bon, B.: A Review of two-phase flow dynamic instabilities in tube boiling systems. International Journal of Heat and Mass Transfer51 (2008) 39943310.1016/j.ijheatmasstransfer.2007.09.026Suche in Google Scholar

9 Papini, D.; Cammi, A.; Colombo, M.; Ricotti, M. E.: Time-domain linear and non-linear studies on density wave oscillations. Chemical Engineering Science81 (2012) 11813910.1016/j.ces.2012.06.005Suche in Google Scholar

10 Chen, J. C.: A Correlation for Boiling Heat Transfer to Saturated Fluids in Convective Flow. Process Design and Development5 (1966) 32232710.1021/i260019a023Suche in Google Scholar

11 Yang, B. W.; Shan, J. Q.; Gou, J. L. et al.: Uniform versus Nonuniform Axial Power Distribution in Rod Bundle CHF Experiments. Science and Technology of Nuclear Installations (2014) 1910.1155/2014/209747Suche in Google Scholar

Received: 2016-03-18
Published Online: 2016-06-11
Published in Print: 2016-06-26

© 2016, Carl Hanser Verlag, München

Artikel in diesem Heft

  1. Contents/Inhalt
  2. Contents
  3. Summaries/Kurzfassungen
  4. Summaries
  5. Editorial
  6. Challenges in reactor core thermal-hydraulics: subchannel analysis, CFD modeling and rod bundle CHF
  7. Technical Contributions/Fachbeiträge
  8. Subchannel analysis and correlation of the Rod Bundle Heat Transfer (RBHT) steam cooling experimental data
  9. CFD analysis on mixing effects of spacer grids with different dimples and sizes for advanced fuel assemblies
  10. An experimental investigation on dynamics and heat transfer associated with a single droplet impacting on a hot surface above the Leidenfrost point temperature
  11. Study on effects of mixing vane grids on coolant temperature distribution by subchannel analysis
  12. Reflood experiments in rod bundles with flow blockages due to clad ballooning
  13. The effect of spacer grid critical component on pressure drop under both single and two phase flow conditions
  14. Numerical method improvement for a subchannel code
  15. Numerical investigation on the characteristics of two-phase flow in fuel assemblies with spacer grid
  16. Effects of axial power shapes on CHF locations in a single tube and in rod bundle assemblies
  17. CFD evaluation on the thermohydraulic characteristics of tube support plates in steam generator
  18. Analysis of heat transfer under high heat flux nucleate boiling conditions
  19. Review of the correlation developments and a new concept based on mixing mechanism for heat transfer enhancement of spacer grids
  20. A comparison of the CFD simulation results in 5 × 5 sub-channels with mixing grids using different turbulence models
  21. Simulation of isothermal multi-phase fuel-coolant interaction using MPS method with GPU acceleration
  22. RELAP5 investigation on subchannel flow instability
Heruntergeladen am 14.10.2025 von https://www.degruyterbrill.com/document/doi/10.3139/124.110754/html
Button zum nach oben scrollen