Startseite Technik Subchannel analysis and correlation of the Rod Bundle Heat Transfer (RBHT) steam cooling experimental data
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Subchannel analysis and correlation of the Rod Bundle Heat Transfer (RBHT) steam cooling experimental data

  • M. P. Riley , L. Mohanta , D. J. Miller , F. B. Cheung , S. M. Bajorek , K. Tien und C. L. Hoxie
Veröffentlicht/Copyright: 11. Juni 2016
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

A subchannel analysis of the steam cooling data obtained in the Rod Bundle Heat Transfer (RBHT) test facility has been performed in this study to capture the effect of spacer grids on heat transfer. The RBHT test facility has a 7 × 7 rod bundle with heater rods and with seven spacer grids equally spaced along the length of the rods. A method based on the concept of momentum and heat transport analogy has been developed for calculating the subchannel bulk mean temperature from the measured steam temperatures. Over the range of inlet Reynolds number, the local Nusselt number was found to exhibit a minimum value between the upstream and downstream spacer grids. The presence of a spacer grid not only affects the local Nusselt number downstream of the grid but also affects the local Nusselt number upstream of the next grid. A new correlation capturing the effect of Reynolds number on the local flow restructuring downstream as well as upstream of the spacer grids was proposed for the minimum Nusselt number. In addition, a new enhancement factor accounting for the effects of the upstream as well as downstream spacer grids was developed from the RBHT data. The new enhancement factor was found to compare well with the data from the ACHILLLES test facility.

Kurzfassung

Zur Bestimmung des Einflusses von Abstandshaltern auf die Wärmeübertragung wurde eine Unterkanalanalyse der Dampfkühlung basierend auf den experimentellen Daten der Rod Bundle Heat Transfer Versuchsanlage durchgeführt. Die Versuchsanlage hat ein 7 × 7 Heizrohrbündel mit sieben Abstandshaltern, die gleichmäßig über der Höhe verteilt sind. Bsierend auf Impuls- und Wärmetransportanalogien wurde die mittlere Unterkanaltemperatur aus den gemessenen Dampftemperaturen bestimmt. Im Bereich der Reynoldszahlen des Experiments durchlief die lokale Nusseltzahl einen Minimalwert zwischen dem unteren und dem oberen Abstandshalter. Abstandshalter beeinflussen nicht nur die lokale Nusselzahl im Bereich des Nachlaufs sondern auch im Bereich des Vorlaufs des nächsten Abstandshalters. Aus den experimentellen Daten wurde eine neue Korrelation für die Berechnung der Reynoldszahl der lokal sich wieder aufbauenden Strömungen für die minimalen lokalen Nusseltzahlen im Nachlauf und im Vorlauf der Abstandshalter entwickelt. Des Weiteren wurde ein neuer Faktor zur Berücksichtigung des Einflusses der Abstandshalter aus den experimentellen Daten abgeleitet. Dieser führt auch bei den experimentellen Daten der ACHILLES Versuchsanlage zu einer sehr guten Übereinstimmung.

References

1 Kidd, G. J.; Hoffman, H. W.: The Temperature Structure and Heat Transfer Characteristics of an Electrically Heated Model of a Seven-Rod Cluster Fuel Element. ASME Paper 68-WA/HT-33, 1968Suche in Google Scholar

2 Velcek, J.; Weber, P.: The Experimental Investigation of Local Heat Transfer Coefficient in the Fuel Spacer Area. Australian Atomic Energy Commission Research Establishment, LIB/TRANS 250, 1970Suche in Google Scholar

3 Krett, V.; Majer,J.: Temperature Fluid Measurement in the Region of Spacing Element. Report ZJE-144 Skoda Works Nuclear Power Construction Dept., Information Centre Plzen-Czechoslovakia, 1971Suche in Google Scholar

4 Drucker, M. I.; Dhir, V. K.; Duffey, R. B.: Two-phase heat transfer for flow in tubes and over rod bundles with blockages. Journal of Heat Transfer106 (1984) 85686410.1115/1.3246764Suche in Google Scholar

5 Marek, J.; Rehme, K.: Heat transfer in smooth and roughened rod bundles near spacer grids. Kernforschungszentrum Karlsruhe (FR Germany). Inst. fuer Neutronenphysik und Reaktortechnik, 1975Suche in Google Scholar

6 Yao, S. C.; Hochreiter, L. E.; Leech, W. J.: Heat transfer augmentation in rod bundles near grid spacers. Journal of Heat Transfer104 (1982) 768110.1115/1.3245071Suche in Google Scholar

7 Yang, S. K.; Chung, M. K.: Spacer Grid Effects on Turbulent Flow in Rod Bundles. Journal of the Korean Nuclear Society28 (1996) 5669Suche in Google Scholar

8 Caraghiaur, D.; Anglart, H.; Frid, W.: Experimental Investigation of Turbulent Flow through Spacer Grids in Fuel Rod Bundles. Nuclear Engineering and Design239 (2009) 2013202110.1016/j.nucengdes.2009.05.029Suche in Google Scholar

9 Chang, S. K.; Moon, S. K.; Baek, W. P.; Choi, Y. D.: Phenomenological investigations on the turbulent flow structures in a rod bundle array with mixing devices. Nuclear Engineering and Design238 (2008) 60060910.1016/j.nucengdes.2007.02.037Suche in Google Scholar

10 Holloway, M. V.; Beasley, D. E.; Conner, M. E.: Single-phase convective heat transfer in rod bundles. Nuclear Engineering and Design238 (2008) 8488510.1016/j.nucengdes.2007.08.003Suche in Google Scholar

11 Miller, D. J.; Cheung, F. B.; Bajorek, S. M.: On the Development of a Grid-Enhanced Single-Phase Convective Heat Transfer Correlation. Nuclear Engineering and Design, 264 (2013) 566010.1016/j.nucengdes.2012.11.023Suche in Google Scholar

12 Marek, J.; Maubach, K.; Rehme, K.: Heat transfer and pressure drop performance of rod bundles arranged in square arrays. International Journal of Heat and Mass Transfer16 (1973) 2215222810.1016/0017-9310(73)90008-2Suche in Google Scholar

13 El-Genk, M. S.; Su, B.; Guo, Z.: Experimental Studies of Forced, Combined, and Natural Convection of Water in Vertical Nine-Rod Bundles with a Square Lattice. International Journal of Heat and Mass Transfer, 36, pp. 23592374, 199310.1016/S0017-9310(05)80120-6Suche in Google Scholar

14 Drucker, M.; Dhir.V. K.: Studies of single-and two-phase heat transfer in a blocked four-rod bundle. Rep. EPRI/Electric power research inst, 1982Suche in Google Scholar

15 Spring, J. P.; McLaughlin, D. M.: Rod Bundle Heat Transfer: Steady-State Steam Cooling Experiments. 14th International Conference on Nuclear Engineering, American Society of Mechanical Engineers, 200610.1115/icone14-89734Suche in Google Scholar

16 Hochreiter, L. E.; Cheung, F. B.; Lin, T. F.; Spring, J. P.; Ergun, S.; Sridharan, A.; Ireland, A.; Rosal, E. R.: RBHT Reflood Heat Transfer Experiments Data and Analyis. Tech. Rep. NUREG/CR-6980, U.S. NRC, 2012Suche in Google Scholar

17 Hochreiter, L. E.; Cheung, F. B.; Lin, T. F.; McLaughlin, D. M.; Spring, J. P.; Kutzler, P. M.; Ergun, S.: Rod Bundle Heat Transfer Facility – Steady-State Steam Cooling Experiments. Tech. Rep. NUREG/CR-7152, U.S. NRC, 2014Suche in Google Scholar

18 Riley, M.: Spacer grid induced heat transfer enhancement in a rod bundle under reflood conditions. PhD Dissertation, Pennsylvania State University, USA, 2015Suche in Google Scholar

19 Mohanta, L.: Theoretical and experimental study of inverted annular film boiling and regime transition during reflood transients. PhD Dissertation, Pennsylvania State University, USA, 201510.13182/NT14-77Suche in Google Scholar

20 Weisman, J.: Heat transfer to water flowing parallel to tube bundles. Nuclear Science and Engineering, 6 (1959) 7986Suche in Google Scholar

21 Pearson, K. G.; Denham, M. K.: Achilles un-ballooned cluster experiments. AEEWR 2339, Winfrith Technology Centre, 1989Suche in Google Scholar

Received: 2016-03-18
Published Online: 2016-06-11
Published in Print: 2016-06-26

© 2016, Carl Hanser Verlag, München

Artikel in diesem Heft

  1. Contents/Inhalt
  2. Contents
  3. Summaries/Kurzfassungen
  4. Summaries
  5. Editorial
  6. Challenges in reactor core thermal-hydraulics: subchannel analysis, CFD modeling and rod bundle CHF
  7. Technical Contributions/Fachbeiträge
  8. Subchannel analysis and correlation of the Rod Bundle Heat Transfer (RBHT) steam cooling experimental data
  9. CFD analysis on mixing effects of spacer grids with different dimples and sizes for advanced fuel assemblies
  10. An experimental investigation on dynamics and heat transfer associated with a single droplet impacting on a hot surface above the Leidenfrost point temperature
  11. Study on effects of mixing vane grids on coolant temperature distribution by subchannel analysis
  12. Reflood experiments in rod bundles with flow blockages due to clad ballooning
  13. The effect of spacer grid critical component on pressure drop under both single and two phase flow conditions
  14. Numerical method improvement for a subchannel code
  15. Numerical investigation on the characteristics of two-phase flow in fuel assemblies with spacer grid
  16. Effects of axial power shapes on CHF locations in a single tube and in rod bundle assemblies
  17. CFD evaluation on the thermohydraulic characteristics of tube support plates in steam generator
  18. Analysis of heat transfer under high heat flux nucleate boiling conditions
  19. Review of the correlation developments and a new concept based on mixing mechanism for heat transfer enhancement of spacer grids
  20. A comparison of the CFD simulation results in 5 × 5 sub-channels with mixing grids using different turbulence models
  21. Simulation of isothermal multi-phase fuel-coolant interaction using MPS method with GPU acceleration
  22. RELAP5 investigation on subchannel flow instability
Heruntergeladen am 11.12.2025 von https://www.degruyterbrill.com/document/doi/10.3139/124.110740/html
Button zum nach oben scrollen