Home Technology An experimental investigation on dynamics and heat transfer associated with a single droplet impacting on a hot surface above the Leidenfrost point temperature
Article
Licensed
Unlicensed Requires Authentication

An experimental investigation on dynamics and heat transfer associated with a single droplet impacting on a hot surface above the Leidenfrost point temperature

  • J. Park and H. Kim
Published/Copyright: June 11, 2016
Become an author with De Gruyter Brill

Abstract

During large loss-of-coolant accidents in nuclear reactors, water splatters as the quench front propagates at the quenching surface, and many droplets of different sizes and velocities are generated and carried with the steam in the cooling channel. Heat transfer due to droplets striking an overheated fuel rod above the Leidenfrost point temperature is important for predicting the peak cladding temperature. This study investigated the dynamics and heat transfer characteristics when a single droplet at room temperature collided with a surface at 425 °C experimentally, using synchronized high-speed video and infrared cameras. Various physical parameters related to heat transfer model development were measured, including the residence time, spreading diameter, local heat flux distribution, effective heat transfer area, average vapor film thickness, and total heat transfer per collision. The measured data were compared with the values of the physical parameters predicted by existing mechanistic models.

Kurzfassung

Bei großen Kühlmittelverluststörfällen spritzt während des Fortschreitens der Quenchfront das Wasser und Tropfen verschiedener Größen und Geschwindigkeiten werden gebildet und mit dem Dampf im Kühlkanal transportiert. Zur Berechnung der maximalen Hüllrohrtemperatur ist die Kenntnis des Wärmeübergangs infolge der auf die heiße Oberfläche auftreffenden Tropfen im Bereich des Leidenfrosteffekts notwendig. Experimente zur Dynamik und zum Wärmeübergang eines einzelnen Tropfens bei Umgebungstemperatur, der auf eine 425 °C heiße Oberfläche trifft, werden in diesem Beitrag vorgestellt. Dabei wurden verschiedene physikalische Parameter wie Verweilzeit, Ablösedurchmesser, lokale Wärmestromverteilung, effektive Wärmeübertragungsfläche, mittlere Dampffilmdicke und Wärmestrom pro Kollision gemessen und mit existierenden mechanistischen Modelldaten verglichen.

References

1 Whachter, L. H. J.; WesterlingN. A. J.: The heat transfer from a hot wall to impinging water drops in the spheroidal state. Chemical Engineering Science21 (1966) 104710.1016/0009-2509(66)85100-XSearch in Google Scholar

2 Chandra, S.; Avedisian, C. T.: On the collision of a droplet with a solid surface. Proceedings Math. Phys. Sci.432 (1991) 134110.1098/rspa.1991.0002Search in Google Scholar

3 Hatta, N.; Fujimoto, H.; Takuda, H.; Kinoshita, K.; Takahashi, O.: Collision dynamics of a water droplet impinging on a rigid surface above the Leidenfrost temperature. ISIJ International35 (1995) 505510.2355/isijinternational.35.50Search in Google Scholar

4 Karl, A.; Frohn, A.: Experimental investigation of interaction processes between droplets and hot walls. Physics of Fluids12 (2000) 78579610.1063/1.870335Search in Google Scholar

5 Hatta, N.; Fujimoto, H.; Kinoshita, K.; Takuda, H.: Experimental study of deformation mechanism of a water droplet impinging on hot metallic surface above the Leidenfrost temperature. J. Fluids Eng.119 (1997) 69210.1115/1.2819300Search in Google Scholar

6 Inada, S.; Yang, W. J.: Mechanisms of miniaturization of sessile drops on a heated surface. International Journal of Heat and Mass Transfer36 (1993) 1505151510.1016/S0017-9310(05)80061-4Search in Google Scholar

7 Senda, J.; Yamada, K.: The heat transfer characteristics of a small droplet impinging upon a hot surface. transactions of the Japan Society of Mechanical Engineers Series B53 (1987) 17618210.1299/kikaib.53.176Search in Google Scholar

8 Ueda, T.; Enomoto, T.; Kanetsuki, M.: Heat transfer characteristics and dynamic behavior of saturated droplets impinging on a heated vertical surface. Bulletin JSME22 (1979) 72410.1299/jsme1958.22.724Search in Google Scholar

9 Dunand, P.; Castanet, G.; Gradeck, M.; Lemoine, F.: Heat transfer of droplets impinging onto a wall above the Leidenfrost temperature. Comptes Rendus Mecanique341 (2013) 7510.1016/j.crme.2012.11.006Search in Google Scholar

10 Lelong, F.; Gradeck, M.; Maillet, D.; Seiler, N.: Experimental study of heat transfer between droplets and wall in Leidenfrost regime. 7th International conference on Multiphase flow, Tamoa, FL USA, May 30 – June 4, 2010.Search in Google Scholar

11 Pedersen, C. O.: An experimental study of the dynamic behavior and heat transfer characteristics of water droplets impinging upon a heated surface. International Journal of Heat and Mass Transfer13 (1970) 36938110.1016/0017-9310(70)90113-4Search in Google Scholar

12 Chatzikyriakou, D.; Walker, S. P.; Hale, C. P.; Hewitt, G. F.: The measurement of heat transfer from hot surfaces to nonwetting droplets. International Journal of Heat and Mass Transfer54 (2011) 1432144010.1016/j.ijheatmasstransfer.2010.11.051Search in Google Scholar

13 Park, C. Y.; Hochreiter, L. E.; Kelly, J. M.; Kohvt, R. J.: Analysis of FLETCH-SEASET 163 rod blocked bundle data using COBRA-TF. NUREG-CR-4166, 1986.Search in Google Scholar

14 Ha, S. J.; Park, C. E.; KimK.D.; BanC.H.: Development of the SPACE code for nuclear power plant. Nuclear Engineering and Technology43 (2011) 4510.5516/NET.2011.43.1.045Search in Google Scholar

15 Bajorek, S. M.; YoungM.Y.: Direct contact heat transfer model for dispersed-flow film boiling. Nuclear Technology132 (2000) 37538810.13182/NT00-A3151Search in Google Scholar

16 Guo, Y.; Mishima, K.: A non-equilibrium mechanistic heat transfer model for post dryout dispersed flow regime. Experimental Thermal and Fluid Science26 (2002) 86186910.1016/S0894-1777(02)00195-4Search in Google Scholar

17 Bolle, L.; Moureau, J. C.: Spray cooling of hot surface. Multiphase Science and Technology1 (1982) 19710.1615/MultScienTechn.v1.i1-4.10Search in Google Scholar

18 Rayleigh, L.: On the capillary phenomena of jets. Proceedings of the Royal Society of London29 (1879) 719710.1098/rspl.1879.0015Search in Google Scholar

19 Lelong, F.; Gradeck, M.; Seiler, N.; Ruyer, P.; Castanet, G.; Du-nand,P.: Behavior of liquid droplets bouncing onto a hot slab. 23rd Annual conference on Liquid Atomization and Spray systems, Brno, Czech Republic, September, 2010Search in Google Scholar

20 Biance, A. E.; Chevy, F.; Clanet, C.; Lagubeau, G.; Quere, D.: On the elasticity of an inertial liquid shock. Journal of Fluid Mechanics554 (2006) 476610.1017/S0022112006009189Search in Google Scholar

21 Jung, J.; Jeong, S.; Kim, H.: Investigation of single-droplet/wall collision heat transfer characteristics using infrared thermometry. International Journal of Heat and Mass Transfer92 (2016) 77478310.1016/j.ijheatmasstransfer.2015.09.050Search in Google Scholar

22 Hamdan, K. S.; KimD.; Moon,S.: An experimental investigation on the droplet behavior impacting a hot surface above the Leidenfrost temperature. International Journal of Mathematical, Computational, Physical, Electrical and Computer Engineering8 (2014) 741746Search in Google Scholar

23 Gradeck, M.; Seiler, N.; Ruyer, P.; Maillet, D.: Heat transfer for Leidenfrost drops bouncing onto a hot surface. Experimental thermal and Fluid Science47 (2013) 142510.1016/j.expthermflusci.2012.10.023Search in Google Scholar

24 Tran, T.; Staat, H. J. J.; Prosperetti, A.; Lohse, D.; Sun, C.: Droplet impact on superheated surfaces. Phys. Rev. Lett.108 (2012) 110.1103/PhysRevLett.108.036101Search in Google Scholar PubMed

Received: 2016-03-18
Published Online: 2016-06-11
Published in Print: 2016-06-26

© 2016, Carl Hanser Verlag, München

Articles in the same Issue

  1. Contents/Inhalt
  2. Contents
  3. Summaries/Kurzfassungen
  4. Summaries
  5. Editorial
  6. Challenges in reactor core thermal-hydraulics: subchannel analysis, CFD modeling and rod bundle CHF
  7. Technical Contributions/Fachbeiträge
  8. Subchannel analysis and correlation of the Rod Bundle Heat Transfer (RBHT) steam cooling experimental data
  9. CFD analysis on mixing effects of spacer grids with different dimples and sizes for advanced fuel assemblies
  10. An experimental investigation on dynamics and heat transfer associated with a single droplet impacting on a hot surface above the Leidenfrost point temperature
  11. Study on effects of mixing vane grids on coolant temperature distribution by subchannel analysis
  12. Reflood experiments in rod bundles with flow blockages due to clad ballooning
  13. The effect of spacer grid critical component on pressure drop under both single and two phase flow conditions
  14. Numerical method improvement for a subchannel code
  15. Numerical investigation on the characteristics of two-phase flow in fuel assemblies with spacer grid
  16. Effects of axial power shapes on CHF locations in a single tube and in rod bundle assemblies
  17. CFD evaluation on the thermohydraulic characteristics of tube support plates in steam generator
  18. Analysis of heat transfer under high heat flux nucleate boiling conditions
  19. Review of the correlation developments and a new concept based on mixing mechanism for heat transfer enhancement of spacer grids
  20. A comparison of the CFD simulation results in 5 × 5 sub-channels with mixing grids using different turbulence models
  21. Simulation of isothermal multi-phase fuel-coolant interaction using MPS method with GPU acceleration
  22. RELAP5 investigation on subchannel flow instability
Downloaded on 11.12.2025 from https://www.degruyterbrill.com/document/doi/10.3139/124.110742/html
Scroll to top button