Home Technology Simulation of isothermal multi-phase fuel-coolant interaction using MPS method with GPU acceleration
Article
Licensed
Unlicensed Requires Authentication

Simulation of isothermal multi-phase fuel-coolant interaction using MPS method with GPU acceleration

  • W. Gou , S. Zhang and Y. Zheng
Published/Copyright: June 11, 2016
Become an author with De Gruyter Brill

Abstract

The energetic fuel-coolant interaction (FCI) has been one of the primary safety concerns in nuclear power plants. Graphical processing unit (GPU) implementation of the moving particle semi-implicit (MPS) method is presented and used to simulate the fuel coolant interaction problem. The governing equations are discretized with the particle interaction model of MPS. Detailed implementation on single-GPU is introduced. The three-dimensional broken dam is simulated to verify the developed GPU acceleration MPS method. The proposed GPU acceleration algorithm and developed code are then used to simulate the FCI problem. As a summary of results, the developed GPU-MPS method showed a good agreement with the experimental observation and theoretical prediction.

Kurzfassung

Die energiereiche Wechselwirkung zwischen Brennstoff und Kühlmittel stellt eine der wichtigsten Sicherheitsfragestellungen in Kernkraftwerken dar. In diesem Beitrag wird eine Weiterentwicklung der Berechnungsmöglichkeiten vorgestellt, bei der die erweiterte semi-implizite Diskretisierung der Grundgleichungen mit Hilfe einer beschleunigten grafischen Methode umgesetzt wird. Am Beispiel einer 3D-Berechnung eines Dammbruchs wird die Methode verifiziert. Anschließend wird eine Rechnung zur Wechselwirkung zwischen Brennstoff und Kühlmittel durchgeführt und mit bestehenden Daten verglichen. Dabei zeigt sich eine gute Übereinstimmung zwischen experimentellen und berechneten Ergebnissen.


* E-mail:

References

1 Ikeda, H.; Koshizuka, S.; Oka, Y.; Park, H. S.; Sugimoto,J.: Numerical analysis of jet injection behavior for fuel-coolant interaction using particle method. Journal of Nuclear Science and Technology38 (2001) 17418210.1080/18811248.2001.9715019Search in Google Scholar

2 Parka, S.; Jeunb, G.: Coupling of rigid body dynamics and moving particle semi-implicit method for simulating isothermal multi-phase fluid interactions. Computer Methods in Applied Mechanics and Engineering200 (2011) 13014010.1016/j.cma.2010.08.001Search in Google Scholar

3 Koshizuka, S.; Oka, Y.: Moving-particle semi-implicit method for fragmentation of incompressible fluid. Journal of Nuclear Science and Engineering123 (1996) 42143410.13182/NSE96-A24205Search in Google Scholar

4 Nomura, K.; Koshizuka, S.; Oka, Y.; Obata, H.: Numerical analysis of droplet breakup behavior using particle method. Journal of Nuclear Science and Technology38 (2001) 1057106410.1080/18811248.2001.9715136Search in Google Scholar

5 Liu, J.; Koshizuka, S.; Oka, Y.: A hybrid particle-mesh method for viscous, incompressible, multiphase flows. Journal of Computational Physics202 (2005) 659310.1016/j.jcp.2004.07.002Search in Google Scholar

6 Anderson, J.; Lorenz, C.; Travesset, A.: General purpose molecular dynamics simulations fully implemented on graphics processing units. Journal of Computational Physics227 (2008) 5342535910.1016/j.jcp.2008.01.047Search in Google Scholar

7 Xiong, Q.; Li, B.; Xu,J.; Wang, X.; Wang, L.; Ge, W.: Efficient 3D DNS of gas-solid flows on Fermi GPGPU. Computers and Fluids70 (2012) 869410.1016/j.compfluid.2012.08.026Search in Google Scholar

8 Hori, C.; Gotoh, H.; Ikari, H.; Khayyer, A.: GPU-acceleration for Moving Particle Semi-Implicit method. Computers and Fluids51 (2011) 17418310.1016/j.compfluid.2011.08.004Search in Google Scholar

9 Kakuda, K.; Nagashima, T.; Hayashi, Y.; Obara, S.; Toyotani,J.; Katsurada, N.; Higuchi, S.; Matsuda, S.: Particle-based fluid flow simulations on GPGPU using CUDA. Computer Modeling in Engineering & Sciences88 (2012) 1728Search in Google Scholar

10 NVIDIA: NVIDIA CUDA-compute unified device architecture programming guide version 4.0. 2011Search in Google Scholar

11 Kondo, M.; Koshizuka, S.; Suzuki, K.: A development of surface tension model using inter-particle force. Proceeding of computational engineering conference19 (2006) 337338Search in Google Scholar

12 Vazques, F.; Garzon, E. M.; Martinez, J. A.; Fernandez, J. J.: The sparse matrix vector product on GPUs. Technical Report, http://www.ace.ual.es/TR/SpMV.GPU.pdf, 2009Search in Google Scholar

13 Park, H. S.; Yamano, N.; Maruyama, Y.; et al.: Study on energetic fuel-coolant interaction in the coolant injection mode of contact. Proc. 6th conf. on nuclear engineering (ICONE-6), San Diego, USA, ICONE-6091, 1998Search in Google Scholar

Received: 2016-03-18
Published Online: 2016-06-11
Published in Print: 2016-06-26

© 2016, Carl Hanser Verlag, München

Articles in the same Issue

  1. Contents/Inhalt
  2. Contents
  3. Summaries/Kurzfassungen
  4. Summaries
  5. Editorial
  6. Challenges in reactor core thermal-hydraulics: subchannel analysis, CFD modeling and rod bundle CHF
  7. Technical Contributions/Fachbeiträge
  8. Subchannel analysis and correlation of the Rod Bundle Heat Transfer (RBHT) steam cooling experimental data
  9. CFD analysis on mixing effects of spacer grids with different dimples and sizes for advanced fuel assemblies
  10. An experimental investigation on dynamics and heat transfer associated with a single droplet impacting on a hot surface above the Leidenfrost point temperature
  11. Study on effects of mixing vane grids on coolant temperature distribution by subchannel analysis
  12. Reflood experiments in rod bundles with flow blockages due to clad ballooning
  13. The effect of spacer grid critical component on pressure drop under both single and two phase flow conditions
  14. Numerical method improvement for a subchannel code
  15. Numerical investigation on the characteristics of two-phase flow in fuel assemblies with spacer grid
  16. Effects of axial power shapes on CHF locations in a single tube and in rod bundle assemblies
  17. CFD evaluation on the thermohydraulic characteristics of tube support plates in steam generator
  18. Analysis of heat transfer under high heat flux nucleate boiling conditions
  19. Review of the correlation developments and a new concept based on mixing mechanism for heat transfer enhancement of spacer grids
  20. A comparison of the CFD simulation results in 5 × 5 sub-channels with mixing grids using different turbulence models
  21. Simulation of isothermal multi-phase fuel-coolant interaction using MPS method with GPU acceleration
  22. RELAP5 investigation on subchannel flow instability
Downloaded on 11.12.2025 from https://www.degruyterbrill.com/document/doi/10.3139/124.110753/pdf
Scroll to top button