Uncertainty analysis and flow measurements in an experimental mock-up of a molten salt reactor concept
-
B. Yamaji
and A. Aszódi
Abstract
In the paper measurement results from the experimental modelling of a molten salt reactor concept will be presented along with detailed uncertainty analysis of the experimental system. Non-intrusive flow measurements are carried out on the scaled and segmented mock-up of a homogeneous, single region molten salt fast reactor concept. Uncertainty assessment of the particle image velocimetry (PIV) measurement system applied with the scaled and segmented model is presented in detail. The analysis covers the error sources of the measurement system (laser, recording camera, etc.) and the specific conditions (de-warping of measurement planes) originating in the geometry of the investigated domain. Effect of sample size in the ensemble averaged PIV measurements is discussed as well. An additional two-loop-operation mode is also presented and the analysis of the measurement results confirm that without enhancement nominal and other operation conditions will lead to strong unfavourable separation in the core flow. It implies that use of internal flow distribution structures will be necessary for the optimisation of the core coolant flow. Preliminary CFD calculations are presented to help the design of a perforated plate located above the inlet region. The purpose of the perforated plate is to reduce recirculation near the cylindrical wall and enhance the uniformity of the core flow distribution.
Kurzfassung
In diesem Beitrag warden Messergebnisse einer Versuchsanlage zu den Strömungsbedingungen in einem Salzschmelzereaktorkonzept vorgestellt zusammen mit einer detaillierten Unsicherheitsanalyse. Dazu wurden nicht invasive Strömungsmessungen in dem skalierten und segmentierten Abbild einer homogenen einzelnen Region der Salzschmelze des Reaktorkonzepts. Eine Unsicherheitsanalyse der PIV-Messungen wird detailliert beschrieben. Dabei werden die Fehlerquellen des Messsystems (Laser, Kamera, usw.) ebenso wie sich aus der untersuchten Geometrie ergebenden spezifischen Bedingungen (Korrektur der Messebenen) berücksichtigt. Auch wird der Einfluss der Probengröße diskutiert. Des Weiteren wird ein Zwei-Loop-Betrieb analysiert. Dabei zeigt sich, dass sich dabei ohne weitere Verbesserungen eine starke Separation der Kernströmung einstellt, die vermieden werden sollte. Dazu wurde der Einfluss interner Strömungsverteilungsstrukturen zur Optimierung der Strömung des Kühlmittels im Kern untersucht und erste CFD-Berechnungen durchgeführt am Beispiel einer perforierten Platte im Eintritt.
References
1 Yamaji, B.; Aszódi, A.; Kovács, M.; Csom, Gy.: Thermal-hydraulic analyses and experimental modelling of MSFR. Annals of Nuclear Energy64 (2014) 457–47110.1016/j.anucene.2013.09.011Search in Google Scholar
2 Yamaji, B.; Aszódi, A.: Experimental investigation of the MSFR molten salt reactor concept. Kerntechnik79 (2014) 408–41610.3139/124.110463Search in Google Scholar
3 Raffel, M.; Willert, C.; Wereley, S.; Kompenhans, J.: Particle Image Velocimetry – A practical guide. Springer, Berlin, Germany, 200710.1007/978-3-540-72308-0Search in Google Scholar
4 DynamicStudio – User's Guide, pp. 306, 319, Dantec Dynamics, (2012)Search in Google Scholar
5 Handbook of Particle Image Velocimetry. Chapter 6, Visualization Society of Japan, 2002, Morikita Publishing (in Japanese)Search in Google Scholar
6 ANSI ASME PTC 19.1-1985: Measurement Uncertainty, Supplement of Instrument and Apparatus. Part 1, ASME, New York, 1986Search in Google Scholar
7 Steele, W. G.; Ferguson, R. A.; Taylor, R. P.; Coleman, H. W.: Comparison of ANSI/ASME and ISO models for calculation of uncertainty. ISA Transactions33 (1994) 339–35210.1016/0019-0578(94)90016-7Search in Google Scholar
8 Recommended Procedures and Guidelines, Uncertainty Analysis Particle Imaging Velocimetry, 7.5-01-03-03, Specialist Committee on Uncertainty Analysis of 25th International Towing Tank Conference (ITTC), 2008Search in Google Scholar
9 Lazar, E.; DeBlauw, B.; Glumac, N.; Dutton, C.; Elliott, G.: A Practical Approach to PIV Uncertainty Analysis. AIAA 2010-4355, 27th AIAA Aerodynamic Measurement Technology and Ground Testing Conference, 28 June – 1 July 2010, Chicago, Illinois 10.2514/6.2010-4355Search in Google Scholar
10 Gui, L.; Longo, J.; Stern, F.: Biases of PIV measurement of turbulent flow and the masked correlation-based interrogation algorithm. Experiments in Fluids30 (2001) 27–3510.1007/s003480000131Search in Google Scholar
11 Gui, L.; Longo, J.; Stern, F.: Towing tank PIV measurement system, data and uncertainty assessment for DTMB Model 5512. Experiments in Fluids31 (2001) 336–34610.1007/s003480100293Search in Google Scholar
12 Shao, M.: Technical Issues for Narrow Angle Astrometry (STEP). lecture note, (http://www.castu.tsinghua.edu.cn/publish/cas/945/20140429143211718785639/lecture%20notes%202-shao.pdf retrieved: 2015.03.02.)Search in Google Scholar
13 Dantec Dynamics A/S: DynamicStudio – User's Guide, pp. 305–322, Dantec Dynamics, (2012)Search in Google Scholar
14 Dantec Dynamics A/S: Imaging Synchronization Devices brochure (2011)Search in Google Scholar
15 Litron Lasers: Lamp Pumped lasers for PIV Applications from Litron (2010)Search in Google Scholar
16 Dantec Dynamics A/S: Seeding particles for flow visualisation, LDA and PIV, Product information, Publication No.: Pi270003 (2002)Search in Google Scholar
17 Westerweel, A.: Particle Image Velocimetry, Cambridge, 2011Search in Google Scholar
18 Uzol, O.; CamciC.: The effect of sample size, turbulence intensity and the velocity field on the experimental accuracy of ensemble averaged PIV measurements. 4th International Symposium on Particle Image Velocimetry Göttingen, Germany, September 17–19, 2001 PIV'01 Paper 1096Search in Google Scholar
19 Sabharwall, P.; Conder, T.; Skifton, R.; Stoots, C.; Soo Kim, E.: PIV Uncertainty Methodologies for CFD Code Validation at the MIR Facility. INL/EXT-12-27728, Idaho National Laboratory, December 201310.2172/1116742Search in Google Scholar
20 Ignatiev, V.; et al.: Progress in Development of Li,Be,Na/F Molten Salt Actinide Recycler & Transmuter Concept. Paper 7548, Proceedings of ICAPP 2007, Nice, France, May 13–18, 2007Search in Google Scholar
21 Kiss, B.; Boros, I.; Aszódi, A.: Recent results of three-dimensional CFD simulations of coolant mixing in VVER-440/213 reactor pressure vessel. 18th Symposium of AER on VVER Reactor Physics and Reactor Safety, Eger, Hungary, October 06–10, 2008Search in Google Scholar
22 IvanovB.; et al.: VVER-1000 Coolant Transient Benchmark – Phase 1 (V1000CT-1) Volume I: Final Specifications (Revision 4). November 2004, US DOE, UECD NEA, NEA/NSC/DOC(2002)6Search in Google Scholar
23 Yamaji, B.; Aszódi, A.: Experimental modelling and numerical analysis of a molten salt fast reactor. Proceedings of the International Conference on Physics of Reactors (PHYSOR2014) September 28–October 3, 2014, Kyoto, Japan, 1106911, JAEA-Conf 2014-003Search in Google Scholar
© 2016, Carl Hanser Verlag, München
Articles in the same Issue
- Contents/Inhalt
- Contents
- Summaries/Kurzfassungen
- Summaries
- Editorial
- Research on the reactor physics and reactor safety of VVER reactors – AER Symposium 2015
- Technical Contributions/Fachbeiträge
- Monte-Carlo code calculation of 3D reactor core model with usage of burnt fuel isotopic compositions, obtained by engineering codes
- Xenon instability study of large core Monte Carlo calculations
- Error detection in core loading in the condition of asymmetrical distribution of power
- New models in VERONA 7.0 system
- Methodology for determining of the weighted mean coolant temperature in the primary circuit hot legs of WWER-1000 reactor plants
- Verification of three-dimensional neutron kinetics model of TRAP-KS code regarding reactivity variations
- Aspects of using a best-estimate approach for VVER safety analysis in reactivity initiated accidents
- Qualification of coupled 3D neutron kinetic/thermal hydraulic code systems by the calculation of a VVER-440 benchmark – re-connection of an isolated loop
- Uncertainties of the KIKO3D-ATHLET calculations using the Kalinin-3 benchmark (Phase II) data
- Coupled code analysis of uncertainty and sensitivity of Kalinin-3 benchmark
- Efficient introduction of natural uranium and thorium into nuclear energy system
- Economical aspects of multiple plutonium and uranium recycling in VVER reactors
- Neutronic analysis of absorbing materials for the control rod system in reactor ALLEGRO
- Uncertainty analysis and flow measurements in an experimental mock-up of a molten salt reactor concept
Articles in the same Issue
- Contents/Inhalt
- Contents
- Summaries/Kurzfassungen
- Summaries
- Editorial
- Research on the reactor physics and reactor safety of VVER reactors – AER Symposium 2015
- Technical Contributions/Fachbeiträge
- Monte-Carlo code calculation of 3D reactor core model with usage of burnt fuel isotopic compositions, obtained by engineering codes
- Xenon instability study of large core Monte Carlo calculations
- Error detection in core loading in the condition of asymmetrical distribution of power
- New models in VERONA 7.0 system
- Methodology for determining of the weighted mean coolant temperature in the primary circuit hot legs of WWER-1000 reactor plants
- Verification of three-dimensional neutron kinetics model of TRAP-KS code regarding reactivity variations
- Aspects of using a best-estimate approach for VVER safety analysis in reactivity initiated accidents
- Qualification of coupled 3D neutron kinetic/thermal hydraulic code systems by the calculation of a VVER-440 benchmark – re-connection of an isolated loop
- Uncertainties of the KIKO3D-ATHLET calculations using the Kalinin-3 benchmark (Phase II) data
- Coupled code analysis of uncertainty and sensitivity of Kalinin-3 benchmark
- Efficient introduction of natural uranium and thorium into nuclear energy system
- Economical aspects of multiple plutonium and uranium recycling in VVER reactors
- Neutronic analysis of absorbing materials for the control rod system in reactor ALLEGRO
- Uncertainty analysis and flow measurements in an experimental mock-up of a molten salt reactor concept