Home Technology Qualification of coupled 3D neutron kinetic/thermal hydraulic code systems by the calculation of a VVER-440 benchmark – re-connection of an isolated loop
Article
Licensed
Unlicensed Requires Authentication

Qualification of coupled 3D neutron kinetic/thermal hydraulic code systems by the calculation of a VVER-440 benchmark – re-connection of an isolated loop

  • A. Kotsarev , M. Lizorkin , M. Benčík , J. Hádek , Y. Kozmenkov and S. Kliem
Published/Copyright: August 10, 2016
Become an author with De Gruyter Brill

Abstract

The 7th AER dynamic benchmark is a continuation of the efforts to validate the codes systematically for the estimation of the transient behavior of VVER type nuclear power plants. The main part of the benchmark is the simulation of the re-connection of an isolated circulation loop with low temperature in a VVER-440 plant. This benchmark was calculated by the National Research Centre “Kurchatov Institute” (with the code ATHLET/BIPR-VVER), ÚJV Řež (with the code RELAP5-3D©) and HZDR (with the code DYN3D/ATHLET). The paper gives an overview of the behavior of the main thermal hydraulic and neutron kinetic parameters in the provided solutions.

Kurzfassung

Der 7. dynamische AER Benchmark führt die Arbeiten zur systematischen Validierung der Programme zur Berechnung von transientem Verhalten in WWER Reaktoren weiter. Der größte Teil dieses Benchmarkproblems widmet sich der Berechnung der Wiederinbetriebnahme eines isolierten Loops mit Kühlmittel niedriger Temperatur in einem WWER-440. Dieser Benchmark wurde vom National Research Centre “Kurchatov Institute” (mit dem Programmsystem ATHLET/BIPR-VVER), ÚJV Řež (RELAP5-3D©) und dem HZDR (DYN3D/ATHLET) berechnet. In diesem Beitrag werden die wesentlichen berechneten Parameter der Thermohydraulik und der Neutronenkinetik verglichen.


* E-mail:

References

1 Telbisz, M.; Keresztúri, A.: Results of a Three-Dimensional Hexagonal Kinetic Benchmark Problem. Proc. 3th Symposium of AER, pp. 217, KFKI Atomic Energy Research Institute, Budapest (1993)Search in Google Scholar

2 Grundmann, U.: Results of the Second Kinetic AER Benchmark. Proc. 4th Symposium of AER, pp. 397, KFKI Atomic Energy Research Institute, Budapest (1994)Search in Google Scholar

3 Kyrki-Rajamäki, R.; Kaloinen, E.: Results of the Third Three-Dimensional Hexagonal Dynamic AER Benchmark Problem Including Thermal Hydraulics Calculations in the Core and a Hot Channel. Proc. 5th Symposium of AER, pp. 255, KFKI Atomic Energy Research Institute, Budapest (1995)Search in Google Scholar

4 Kyrki-Rajamäki, R.: Comparison of the First Results of the 4th Hexagonal Dynamic AER Benchmark, Boron Dilution in the Core. Proc. 7th Symposium of AER, pp. 321, KFKI Atomic Energy Research Institute, Budapest (1997)Search in Google Scholar

5 Kliem, S.: Comparison of the Results of the Fifth Dynamic AER Benchmark – A Benchmark for Coupled Thermohydraulic System/3D Hexagonal Neutron Kinetic Core Models. Proc. 8th Symposium of AER, pp. 429469, KFKI Atomic Energy Research Institute, Budapest (1998)Search in Google Scholar

6 Kliem, S.; Seidel, A.: Comparison of the results of the 6th Dynamic AER Benchmark – Main Steam Line Break in a NPP with VVER-440. Proc. 11th Symposium of AER, pp. 295329, KFKI Atomic Energy Research Institute, Budapest (2001)Search in Google Scholar

7 Kliem, S.; Danilin, S.; Hämäläinen, A.; Hádek, J.; Keresztúri, A.; Siltanen, P.: Qualification of coupled 3D neutron kinetic/thermal hydraulic code systems by the calculation of main steam line break benchmarks in a NPP with VVER-440 reactor. Nucl. Sc. Eng.157 (2007) 28010.13182/NSE07-A2728Search in Google Scholar

8 Kotsarev, A.; Lizorkin, M.; Petrin, R.: Definition of the 7th Dynamic AER Benchmark – VVER-440 Pressure Vessel Coolant Mixing by Re-connection of an Isolated Loop (Edition 1). Proceedings of the 20th Symposium of AER on VVER Reactor Physics and Reactor Safety, Hanasaari, Espoo, Finland, September 2010, pp. 583–598, KFKI Atomic Energy Research Institute, Budapest (2010), ISBN 978-963-372-644-0Search in Google Scholar

9 Lizorkin, M.; Nikonov, S.; Langenbuch, S.; Velkov, K.: Development and Application of the Coupled Thermal-Hydraulics and Neutron-Kinetics Code ATHLET/BIPR-VVER for Safety Analysis. EUROSAFE-2006, Paris, November 13–14, 2006Search in Google Scholar

10 RELAP5–3D© Code Manual. Volumes 1 to 5, Idaho National Laboratory, Idaho Falls, Idaho 83415, INEEL-EXT- 98-00834, Revision 2.4, June 2005Search in Google Scholar

11 Kozmenkov, Y.; Kliem, S.; Grundmann, U.; Rohde, U.; Weiss, F.-P.: Calculation of the VVER-1000 coolant transient benchmark using the coupled code systems DYN3D/RELAP5 and DYN3D/ATHLET. Nucl. Eng. Design.237 (2007) 193810.1016/j.nucengdes.2007.02.021Search in Google Scholar

12 Kozmenkov, Y.; Kliem, S.; Rohde, U.: Validation and verification of the coupled neutron kinetic/thermal hydraulic system code DYN3D/ATHLET. Ann. Nucl. Energ.84 (2015) 15310.1016/j.anucene.2014.12.012Search in Google Scholar

13 Austregesilo, H.; et al.: ATHLET Mod. 3.0 Cycle A Models and Methods. GRS-P-1, vol. 4, Rev. 3, 2012Search in Google Scholar

14 Lizorkin, M.; Gordienko, P.; Kalugin, M.; KotsarevA.; Oleksyuk, D.: Development of codes and KASKAD complex. Kerntechnik80 (2015) 31410.3139/124.110503Search in Google Scholar

15 Rohde, U.; et al.: The reactor dynamics code DYN3D – models, validation and applications. Progress in Nuclear Energy89 (2016) 17010.1016/j.pnucene.2016.02.013Search in Google Scholar

16 Duerigen, S.; Rohde, U.; Bilodid, Y.; Mittag, S.: The reactor dynamics code DYN3D and its trigonal-geometry nodal diffusion model. Kerntechnik78 (2013) 31010.3139/124.110382Search in Google Scholar

17 Beckert, C.; Grundmann, U.: Development and verification of a nodal approach for solving the multigroup SP3 equations. Annals of Nuclear Energy35 (2008) 7510.1016/j.anucene.2007.05.014Search in Google Scholar

18 Duerigen, S.; Fridman, E.: The simplified P3 approach on a trigonal geometry of the nodal reactor code DYN3D. Kerntechnik77 (2012) 22610.3139/124.110247Search in Google Scholar

19 Manera, A.; Rohde, U.; Prasser, H.-M.; van der Hagen, T. H. J. J.: Modelling of flashing-induced instabilities in the start-up phase of natural-circulation BWRs using the code FLOCAL. Nucl. Eng. Design235 (2005) 151710.1016/j.nucengdes.2005.01.008Search in Google Scholar

20 Rohde, U.: The modelling of fuel rod behaviour under RIA conditions in the code DYN3D. Annals of Nucl. Energy28 (2001) 134310.1016/S0306-4549(00)00128-6Search in Google Scholar

21 Turinsky, F. J.; Sarour, H. N.; Al-Chalabi, R. M. K.; Engrand, P.; FaureF.X.; Guo, W.: NESTLE 5.02, Code system to solve the few-group neutron diffusion equation fixed-source steady-state and transient problems. CCC-641, Radiation Shielding Information Center, P.O. Box 2008, Oak Ridge, TN 37831-6362 (December 1996)Search in Google Scholar

22 Benčík, M.; Hádek, J.: Preliminary Results of the Seventh Three-dimensional AER Dynamic Benchmark Problem Calculation. Solution with DYN3D and RELAP5–3D© Codes. Proceedings of the Twenty-first Symposium of AER, Dresden, Germany, 19–23 September 2011, pp. 425447, Kiadja az MTA KFKI Atomenergia Kutatóintézet, Budapest (2011), ISBN 978-963-372-646-4Search in Google Scholar

23 Benčík, M.; Hádek, J. J.; Kozmenkov, Y.; Kliem, S.: The First Comparison of the Seventh AER Dynamic Benchmark Problem Results Obtained by RELAP5-3D© and DYN3D/ATHLET Computing Codes. Proceedings of the Twenty-second Symposium of AER, Pruhonice, Czech Republic, 1–5 October 2012, pp. 653675, Kiadja az MTA Energiatudományi Kutatóközpont, Budapest (2012), ISBN 978-963-508-627-6Search in Google Scholar

24 Kotsarev, A.; Lizorkin, M.; Petrin, R.: Comparison of the Results of the 7th Dynamic AER Benchmark – VVER-440 Pressure Vessel Coolant Mixing by Re-connection of an Isolated Loop. Proceedings of the 23th Symposium of AER on VVER Reactor Physics and Reactor Safety, 2013Search in Google Scholar

25 Kotsarev, A.; Lizorkin, M.: Comparison of the Results of the 7th Dynamic AER Benchmark – VVER-440 Pressure Vessel Coolant Mixing by Re-connection of an Isolated Loop. Proceedings of the 24th Symposium of AER on VVER Reactor Physics and Reactor Safety, 2014Search in Google Scholar

Received: 2016-01-28
Published Online: 2016-08-10
Published in Print: 2016-08-26

© 2016, Carl Hanser Verlag, München

Articles in the same Issue

  1. Contents/Inhalt
  2. Contents
  3. Summaries/Kurzfassungen
  4. Summaries
  5. Editorial
  6. Research on the reactor physics and reactor safety of VVER reactors – AER Symposium 2015
  7. Technical Contributions/Fachbeiträge
  8. Monte-Carlo code calculation of 3D reactor core model with usage of burnt fuel isotopic compositions, obtained by engineering codes
  9. Xenon instability study of large core Monte Carlo calculations
  10. Error detection in core loading in the condition of asymmetrical distribution of power
  11. New models in VERONA 7.0 system
  12. Methodology for determining of the weighted mean coolant temperature in the primary circuit hot legs of WWER-1000 reactor plants
  13. Verification of three-dimensional neutron kinetics model of TRAP-KS code regarding reactivity variations
  14. Aspects of using a best-estimate approach for VVER safety analysis in reactivity initiated accidents
  15. Qualification of coupled 3D neutron kinetic/thermal hydraulic code systems by the calculation of a VVER-440 benchmark – re-connection of an isolated loop
  16. Uncertainties of the KIKO3D-ATHLET calculations using the Kalinin-3 benchmark (Phase II) data
  17. Coupled code analysis of uncertainty and sensitivity of Kalinin-3 benchmark
  18. Efficient introduction of natural uranium and thorium into nuclear energy system
  19. Economical aspects of multiple plutonium and uranium recycling in VVER reactors
  20. Neutronic analysis of absorbing materials for the control rod system in reactor ALLEGRO
  21. Uncertainty analysis and flow measurements in an experimental mock-up of a molten salt reactor concept
Downloaded on 11.12.2025 from https://www.degruyterbrill.com/document/doi/10.3139/124.110702/html
Scroll to top button