Neutronic analysis of absorbing materials for the control rod system in reactor ALLEGRO
-
F. Čajko
, M. Sečanský , T. Chrebet , R. Zajac and P. Dařílek
Abstract
Experimental reactor ALLEGRO is a gas cooled fast reactor in the design stage. The current design of its reactivity control system is based on control rods filled with boron carbide as the absorber. Because of disadvantages connected to high boron enrichment a possibility of using other absorbent materials was explored to lower the boron enrichment and increase the worth of the control rods. The results of neutronic Monte-Carlo analyses in a computational supercell are presented in this paper. Three absorbent materials most suitable for a use in reactor ALLEGRO (B4C, EuB6 and ReB2) have been analysed also in a full core model. A possible benefit of a neutron trap concept is explored as well but materials with satisfactory neutronic properties proved to be not suitable for expected high temperatures in the reactor.
Kurzfassung
Das aktuelle Design des Kontrollstabsystems des gasgekühlten schnellen experimentellen Reaktorkonzepts ALLEGRO basiert auf Kontrollstäben, die mit Borkarbid als Absorber gefüllt sind. Aufgrund der mit hohen Borgehalten einhergehenden Nachteile wurden die Möglichkeiten untersucht, Materialien mit niedrigeren Borgehalten im Absorber einzusetzen und so den Wert der Kontrollstäbe zu erhöhen. In diesem Beitrag werden analytische Ergebnisse zu Monte-Carlo Neutronenberechnungen vorgestellt. Dabei wurde in einem kompletten Kernmodell der Einsatz der drei Absorbermaterialen B4C, EuB6 and ReB2, die in ALLEGRO eingesetzt werden können, untersucht. Es werden mögliche Vorteile eines Konzepts mit einer Neutronenfalle erläutert, obwohl die Materialien mit den dafür notwendigen Neutroneneigenschaften wie HfH2 und ZrH2 für den Einsatz bei den hohen Temperaturen des ALLEGRO Reaktors nicht geeignet sind.
References
1 Poette, C.; et al.: ALLEGRO Preliminary Viability Report. CEA, Paris, 2009Search in Google Scholar
2 Kloosterman, J. L.: Contribution to final report on GFR Core performance & uncertainties. European Gas Cooled Fast Project, FP-7, 2012Search in Google Scholar
3 Sauvagne, J. F.: Phénix 30 years of history: the heart of a reactor. Plant description, 2010Search in Google Scholar
4 Ailly, H.; et al.: The Nuclear Fuel of Pressurized Water Reactors and Fast Reactors. Lavoisier Publishing, Paris, 1999, 645 pages (ISBN: 2-7272-0198-2)Search in Google Scholar
5 Temesvári, E.: ALLEGRO Core Specifications. ESNII+, 2014. (Issued on 15.10.2014)Search in Google Scholar
6 Čajko; et al.: Work Package A.9. Report no. E_1300115_A-9-2_A-9-3_A-9-4_A-9-5, rev. 01, VUJE, a.s., Trnava, 2015. (Issued on 30.9.2015)Search in Google Scholar
7 Status of control rod designs for fast reactors and experience with operation, in Absorber materials, control rods and design of shutdown systems for advanced liquid metal fast reactors. International Atomic Energy Agency, 1995Search in Google Scholar
8 Chadwick, M. B.; et al.: ENDF/B-VII.0: Next Generation Evaluated Nuclear Data Library for Nuclear Science and Technology. Nuclear Data Sheets, 200610.1016/j.nds.2006.11.001Search in Google Scholar
9 Leppänen, J.: Development of a New Monte Carlo Reactor Physics Code [Uuden Monte Carlo-reaktorifysiikkakoodin kehittäminen], VTT Publications, 2007Search in Google Scholar
10 MacFarlane, R. E.; Kaher, A. C.: Methods for Processing ENDF/B-VII with NJOY. Nuclear Data Sheets, vol. 111, p. 2739–2890, 2010 10.1016/j.nds.2010.11.001Search in Google Scholar
11 Mahagin, D. E.: Fast Reactor Neutron Absorber Materials. American Ceramic Society, 1979. (HEDL-SA-1690-FP)Search in Google Scholar
12 Thermophysical Properties of Materials for Nuclear Engineering: A Tutorial and Collection of Data. (1-st issue). International Atomic Energy Agency, Vienna, 2008Search in Google Scholar
13 Reuss, P.: Neutron Physics. EDP Sciences, 2008Search in Google Scholar
14 Iwasaki, T.; Konashi, K.: Development of Hydride Absorber for Fast Reactor – Application of Hafnium Hydride to Control Rod of Large Fast Reactor. Journal of Nuclear Science and Technology46 (2009) 874–88210.1080/18811248.2007.9711595Search in Google Scholar
15 Simnad, M.: The UZrHx alloy: Its properties and use in TRIGA fuel. Nuclear Engineering and Design64 (1981) 403–42210.1016/0029-5493(81)90135-7Search in Google Scholar
16 Transatomic Power Corporation: Technical White Paper. V 1.0.2, January 2016. (http://transatomicpower.com)Search in Google Scholar
17 Duderstadt, J.; Hamilton, Louis: Nuclear Reactor Analysis. John Wiley & Sons, Inc., 1976, ISBN 0-471-22363-8Search in Google Scholar
© 2016, Carl Hanser Verlag, München
Articles in the same Issue
- Contents/Inhalt
- Contents
- Summaries/Kurzfassungen
- Summaries
- Editorial
- Research on the reactor physics and reactor safety of VVER reactors – AER Symposium 2015
- Technical Contributions/Fachbeiträge
- Monte-Carlo code calculation of 3D reactor core model with usage of burnt fuel isotopic compositions, obtained by engineering codes
- Xenon instability study of large core Monte Carlo calculations
- Error detection in core loading in the condition of asymmetrical distribution of power
- New models in VERONA 7.0 system
- Methodology for determining of the weighted mean coolant temperature in the primary circuit hot legs of WWER-1000 reactor plants
- Verification of three-dimensional neutron kinetics model of TRAP-KS code regarding reactivity variations
- Aspects of using a best-estimate approach for VVER safety analysis in reactivity initiated accidents
- Qualification of coupled 3D neutron kinetic/thermal hydraulic code systems by the calculation of a VVER-440 benchmark – re-connection of an isolated loop
- Uncertainties of the KIKO3D-ATHLET calculations using the Kalinin-3 benchmark (Phase II) data
- Coupled code analysis of uncertainty and sensitivity of Kalinin-3 benchmark
- Efficient introduction of natural uranium and thorium into nuclear energy system
- Economical aspects of multiple plutonium and uranium recycling in VVER reactors
- Neutronic analysis of absorbing materials for the control rod system in reactor ALLEGRO
- Uncertainty analysis and flow measurements in an experimental mock-up of a molten salt reactor concept
Articles in the same Issue
- Contents/Inhalt
- Contents
- Summaries/Kurzfassungen
- Summaries
- Editorial
- Research on the reactor physics and reactor safety of VVER reactors – AER Symposium 2015
- Technical Contributions/Fachbeiträge
- Monte-Carlo code calculation of 3D reactor core model with usage of burnt fuel isotopic compositions, obtained by engineering codes
- Xenon instability study of large core Monte Carlo calculations
- Error detection in core loading in the condition of asymmetrical distribution of power
- New models in VERONA 7.0 system
- Methodology for determining of the weighted mean coolant temperature in the primary circuit hot legs of WWER-1000 reactor plants
- Verification of three-dimensional neutron kinetics model of TRAP-KS code regarding reactivity variations
- Aspects of using a best-estimate approach for VVER safety analysis in reactivity initiated accidents
- Qualification of coupled 3D neutron kinetic/thermal hydraulic code systems by the calculation of a VVER-440 benchmark – re-connection of an isolated loop
- Uncertainties of the KIKO3D-ATHLET calculations using the Kalinin-3 benchmark (Phase II) data
- Coupled code analysis of uncertainty and sensitivity of Kalinin-3 benchmark
- Efficient introduction of natural uranium and thorium into nuclear energy system
- Economical aspects of multiple plutonium and uranium recycling in VVER reactors
- Neutronic analysis of absorbing materials for the control rod system in reactor ALLEGRO
- Uncertainty analysis and flow measurements in an experimental mock-up of a molten salt reactor concept