Home Methodology for determining of the weighted mean coolant temperature in the primary circuit hot legs of WWER-1000 reactor plants
Article
Licensed
Unlicensed Requires Authentication

Methodology for determining of the weighted mean coolant temperature in the primary circuit hot legs of WWER-1000 reactor plants

  • Yu. V. Saunin , A. N. Dobrotvorski , A. V. Semenikhin and S. I. Ryasny
Published/Copyright: August 10, 2016
Become an author with De Gruyter Brill

Abstract

At WWER-1000 NPPs, as well as at PWR NPPs, there is a problem of determining the correct weighted mean coolant temperature in the primary circuit hot legs based on the measuring channels information. The problem is caused by the coolant temperature stratification. The technical documentation for engineering support and maintenance of I&C systems does not provide any regulatory guidelines to consider this effect. Therefore, it is very important to represent a new methodology for determining the weighted mean coolant temperature in the primary circuit hot legs of the WWER-1000 reactor plants. The given paper presents the basic preconditions and approaches applied during the methodology development. They were worked out on the basis of the executed numerical and experimental research taking into account the analysis of the extensive material obtained by the authors from full-scale tests during the commissioning of WWER-1000 power units, as well as operational data obtained from several power units with different fuel loadings.

Kurzfassung

Sowohl bei WWER-1000-Reaktoren als auch bei Druckwasserreaktoren ist die Bestimmung einer gewichteten mittleren Kühlmitteltemperatur in den heißen Strängen des Primärkreislaufs allein auf Basis der Messkanalinformationen schwierig aufgrund der Temperaturschichtungen im Kühlmittel. Es gibt keine Berechnungsvorgaben zur Berücksichtigung dieser Temperaturschichtungen bei der Berechnung der mittleren Kühlmitteltemperatur. In diesem Beitrag wird eine Methode vorgestellt, die für heiße Stränge in WWER-1000-Reaktoren angewendet werden kann. Es werden die grundlegenden Annahmen und Bedingungen vorgestellt und die Entwicklung der Methode beschrieben. Sie basiert auf numerischen und experimentellen Arbeiten und berücksichtigt die Erfahrungen, die die Autoren sowohl bei Inbetriebnahmen von WWER-1000-Reaktoren als auch beim Betrieb dieser Anlagen gewonnen haben.


* E-mail:

References

1 Saunin, Yu. V.; Dobrotvorsky, A. N.; Semenikhin, A. V.: Examination of factors determining the coolant thermal stratification in hot legs of primary circuit loops of NPPs with WWER-1000 reactors. Proc. 8th Int. Conf. Safety, Assur. Nucl. Power Plants with WWER, JSC EDO “Gidropress”, Podolsk, 2013 (in Russian).Search in Google Scholar

2 Saunin, Yu. V.; Dobrotvorski, A. N.; Semenikhin, A. V.; Ryasny, S. I.; Kulish, G. V.; Abdullaev, A.M.: Numerical and experimental investigation of 3D coolant temperature distribution in the hot legs of primary circuit of reactor plant with WWER-1000. Kerntechnik80 (2015) 4; page 36637210.3139/124.110511Search in Google Scholar

3 Dery, V. P.; Shestakov, N. B.; Arutyunyan, A. H.: More precise definition of MCP flow rate characteristics, definition of additive corrections to the coolant temperature monitoring at a rated power (determination of average coolant temperature in PCP loops) for exact calculation of RP thermal power with primary circuit parameters. Proc. 9th Int. Conf. Safety, efficiency and atomic engineering economy, JSC “Concern Rosenergoatom”, Moscow, 2014, (in Russian).Search in Google Scholar

4 Hashemian, H.M.: Maintenance of Process Instrumentation in Nuclear Power Plants. Springer-VerlagBerlin Heidelberg, 2006.Search in Google Scholar

5 Chiang, J.S.C. et al.: Pressurized Water Reactor (PWR) Hot-leg Streaming. Part 1: Computation Fluid Dynamics (CFD) Simulations. Nuclear Engineering and Design. 2011. 241 (2011) 1768177510.1016/j.nucengdes.2009.12.028Search in Google Scholar

6 Mitin, V. I.; Kalinushkin, A. E.; Golovanov, M. N.; Filatov, V. P.: The main decisions for the modernized in-core monitoring system of WWER-1000 reactors. Proc. 6th Meeting of the International symposium “Measurements important for safety of reactors”, Moscow, 2007 (in Russian).Search in Google Scholar

7 Bai, V. F.; Bogachek, L. N.; Makarov, S. V.; Lupishko, A. N.: The state of the in-core temperature monitoring and the analysis of basic thermophysical power plant characteristics at Kalinin NPP power units. Proc. 7th Int. Conf. Safety, efficiency and atomic engineering economy, JSC “Concern Rosenergoatom”, Moscow, 2010 (in Russian).Search in Google Scholar

8 Prasser, H.-M.; Kliem, S.: Coolant mixing experiments in the upper plenum of the ROCOM test facility. Nuclear Engineering and Design276 (2014) 3042, 10.1016/j.nucengdes.2014.05.016Search in Google Scholar

9 Saunin, Yu. V.; Dobrotvorsky, A. N.; Semenikhin, A. V.: Research of the coolant temperature at a core inlet at commissioning the power unit No. 2 Rostov NPP Proc. 7th Int. Conf. Safety, Assur. Nucl. Power Plants with WWER. JSC EDO “Gidropress”, Podolsk, 2011 (in Russian)Search in Google Scholar

10 ISO 5167–2:2003(en). Measurement of fluid flow by means of pressure differential devices inserted in circular cross-section conduits running full – Part 2: Orifice plates.Search in Google Scholar

11 Saunin, Yu. V.; Dobrotvorsky, A. N.; Semenikhin, A. V.: Full-scale tests of modernized ICMS during commissioning unit-3 of Kalinin NPP. Proc. 5th Int. Conf. Safety, Assur. Nucl. Power Plants with WWER, JSC EDO “Gidropress”, Podolsk, 2007 (in Russian).Search in Google Scholar

12 Saunin, Yu. V.; Dobrotvorsky, A. N.; Semenikhin, A. V.: Specialized software for the full-scale tests of WWER-1000 ICMS. Proc. 6th Int. Conf. Safety, Assur. Nucl. Power Plants with WWER, JSC EDO “Gidropress”, Podolsk, 2009 (in Russian).Search in Google Scholar

13 JCGM 100:2008. Evaluation of measurement data – Guide to the expression of uncertainty in measurement.Search in Google Scholar

Received: 2016-02-04
Published Online: 2016-08-10
Published in Print: 2016-08-26

© 2016, Carl Hanser Verlag, München

Articles in the same Issue

  1. Contents/Inhalt
  2. Contents
  3. Summaries/Kurzfassungen
  4. Summaries
  5. Editorial
  6. Research on the reactor physics and reactor safety of VVER reactors – AER Symposium 2015
  7. Technical Contributions/Fachbeiträge
  8. Monte-Carlo code calculation of 3D reactor core model with usage of burnt fuel isotopic compositions, obtained by engineering codes
  9. Xenon instability study of large core Monte Carlo calculations
  10. Error detection in core loading in the condition of asymmetrical distribution of power
  11. New models in VERONA 7.0 system
  12. Methodology for determining of the weighted mean coolant temperature in the primary circuit hot legs of WWER-1000 reactor plants
  13. Verification of three-dimensional neutron kinetics model of TRAP-KS code regarding reactivity variations
  14. Aspects of using a best-estimate approach for VVER safety analysis in reactivity initiated accidents
  15. Qualification of coupled 3D neutron kinetic/thermal hydraulic code systems by the calculation of a VVER-440 benchmark – re-connection of an isolated loop
  16. Uncertainties of the KIKO3D-ATHLET calculations using the Kalinin-3 benchmark (Phase II) data
  17. Coupled code analysis of uncertainty and sensitivity of Kalinin-3 benchmark
  18. Efficient introduction of natural uranium and thorium into nuclear energy system
  19. Economical aspects of multiple plutonium and uranium recycling in VVER reactors
  20. Neutronic analysis of absorbing materials for the control rod system in reactor ALLEGRO
  21. Uncertainty analysis and flow measurements in an experimental mock-up of a molten salt reactor concept
Downloaded on 25.10.2025 from https://www.degruyterbrill.com/document/doi/10.3139/124.110710/html
Scroll to top button