Home Technology Error detection in core loading in the condition of asymmetrical distribution of power
Article
Licensed
Unlicensed Requires Authentication

Error detection in core loading in the condition of asymmetrical distribution of power

  • A. Ryzhov and A. Pinegin
Published/Copyright: August 10, 2016
Become an author with De Gruyter Brill

Abstract

The error detection in core loading in many cases happens in conditions of a significant asymmetry in the distribution of power density, which is caused by thermal mechanical deformations of reactor core, and temperature differences in the cold legs of coolant. The asymmetry of power distribution essentially decreases the effectiveness of algorithms used to detect errors in the core loading using ICIS data. The paper proposes the ways for solving this problem by means of special filtration algorithms.

Kurzfassung

Die Fehlererkennung in Kernbeladungen muss in vielen Fällen beim Vorliegen deutlich asymmetrischer Leistungsdichteverteilungen durchgeführt werden. Diese Asymmetrie wird durch thermische mechanische Verformungen des Reaktorkerns und durch Temperaturdifferenzen in kalten Kühlmittelsträngen hervorgerufen und führt zu einer deutlichen Effektivitätsverlust der Algorithmen, die zur Fehlererkennung der Kernbeladung auf Basis der ICIS-Daten benutzt werden. In diesem Beitrag werden spezielle Filteralgorithmen vorgestellt, mit deren Hilfe diese Probleme verringert werden können.


* E-mail:

References

1 Martens, H.; Næs, T.: Multivariate calibration. Wiley, New York, 1989Search in Google Scholar

2 Pugachev, V. S.: Theory of Probability and Mathematical Statistics. Moscow, FIZMATLIT2002Search in Google Scholar

3 Draper, H.; Smith, G.: Applied Regression Analysis. (2 Vols.) Finance and Statistics, Moscow1987Search in Google Scholar

4 Demidenko, E. W.: Linear and nonlinear regression. Finance and Statistics. Moscow, 1981Search in Google Scholar

5 Krzykacz, B.; Hofer, E.; Kloos, M.: A Software System for Probabilistic Uncertainty and Sensitivity Analysis of Results from Computer Models. Proceedings of PSAM-II, San Diego, California, 20.–25. March 2010Search in Google Scholar

6 Feinberg, S. M.; Shikhov, S. B.; Trojan, V. B.: Theory of nuclear reactors. MoscowAtomizdat1978Search in Google Scholar

7 NOSTRA program (version 5.0). Attestation passport number of software agents 167. Federal supervision of Russia on nuclear and radiation safety in 2003Search in Google Scholar

Received: 2016-01-29
Published Online: 2016-08-10
Published in Print: 2016-08-26

© 2016, Carl Hanser Verlag, München

Articles in the same Issue

  1. Contents/Inhalt
  2. Contents
  3. Summaries/Kurzfassungen
  4. Summaries
  5. Editorial
  6. Research on the reactor physics and reactor safety of VVER reactors – AER Symposium 2015
  7. Technical Contributions/Fachbeiträge
  8. Monte-Carlo code calculation of 3D reactor core model with usage of burnt fuel isotopic compositions, obtained by engineering codes
  9. Xenon instability study of large core Monte Carlo calculations
  10. Error detection in core loading in the condition of asymmetrical distribution of power
  11. New models in VERONA 7.0 system
  12. Methodology for determining of the weighted mean coolant temperature in the primary circuit hot legs of WWER-1000 reactor plants
  13. Verification of three-dimensional neutron kinetics model of TRAP-KS code regarding reactivity variations
  14. Aspects of using a best-estimate approach for VVER safety analysis in reactivity initiated accidents
  15. Qualification of coupled 3D neutron kinetic/thermal hydraulic code systems by the calculation of a VVER-440 benchmark – re-connection of an isolated loop
  16. Uncertainties of the KIKO3D-ATHLET calculations using the Kalinin-3 benchmark (Phase II) data
  17. Coupled code analysis of uncertainty and sensitivity of Kalinin-3 benchmark
  18. Efficient introduction of natural uranium and thorium into nuclear energy system
  19. Economical aspects of multiple plutonium and uranium recycling in VVER reactors
  20. Neutronic analysis of absorbing materials for the control rod system in reactor ALLEGRO
  21. Uncertainty analysis and flow measurements in an experimental mock-up of a molten salt reactor concept
Downloaded on 11.12.2025 from https://www.degruyterbrill.com/document/doi/10.3139/124.110706/pdf
Scroll to top button