Home Technology Monte-Carlo code calculation of 3D reactor core model with usage of burnt fuel isotopic compositions, obtained by engineering codes
Article
Licensed
Unlicensed Requires Authentication

Monte-Carlo code calculation of 3D reactor core model with usage of burnt fuel isotopic compositions, obtained by engineering codes

  • S. S. Aleshin , S. S. Gorodkov and A. I. Shcherenko
Published/Copyright: August 10, 2016
Become an author with De Gruyter Brill

Abstract

A burn-up calculation of large systems by Monte-Carlo code (MCU) is complex process and it requires large computational costs. Previously prepared isotopic compositions are proposed to be used for the Monte-Carlo code calculations of different system states with burnt fuel. Isotopic compositions are calculated by an approximation method. The approximation method is based on usage of a spectral functionality and reference isotopic compositions, that are calculated by the engineering codes (TVS-M, BIPR-7A and PERMAK-A). The multiplication factors and power distributions of FAs from a 3-D reactor core are calculated in this work by the Monte-Carlo code MCU using earlier prepared isotopic compositions. The separate conditions of the burnt core are observed. The results of MCU calculations were compared with those that were obtained by engineering codes.

Kurzfassung

Abbrandrechnungen für große Reaktorkerne mit Monte-Carlo-Programmen sind komplex und rechenzeitintensiv. In diesem Beitrag wird empfohlen, Isotopenmischungen für verschiedene Abbrandzustände des Brennstoffs vorzubereiten und dann in den Monte-Carlo-Berechnungen zu nutzen. Diese Isotopenverteilungen werden durch Approximation bestimmt und basieren auf Spektralfunktionen und Bezugsmischungen der Isotope. Für diese Rechnungen werden Programme wie TVS-M, BIPR-7A und PERMAK-A eingesetzt. In diesem Beitrag wird demonstriert, wie die mit diesen Programmen bestimmten Isotopenmischungen im Monte-Carlo-Programm MCU zur Berechnung der Multiplikationsfaktoren und der Leistungsverteilungen in einem dreidimensionalen Reaktorkern genutzt werden. Die so erzielten Ergebnisse werden dann mit anderen Rechnungen verglichen.


* E-mail:

References

1 Krýsl, V.; Mikoláš, P.; Sprinzl, D.; Švarný. J.; Temesvári, E.; Pós, I.; Heraltov, L.: Full-Core VVER-440 Calculation Benchmark. Kerntechnik79 (2014) 27910.3139/124.110453Search in Google Scholar

2 Temesvári, E.; Hordósy, G.; Hegyi, Gy.; Keresztúri, A.; Maráczy, Cs.: Solution of the ‘full-core’ VVER-440 calculation benchmark by KARATE: analysis and conclusions. 20rd Symposium of AER, 2010Search in Google Scholar

3 Krýsl, V.; Mikoláš, P.; Sprinzl, D.; Švarný. J.: MIDICORE VVER-1000 core periphery power tilt benchmark proposal. 23rd Symposium of AER, 2013Search in Google Scholar

4 Gomin, E.A.; Majorov, L.V.; et al.: Program MCU-RFFI/A with library of constants DLC/MCUDAT-1.0. Federal supervision of Russia on nuclear and radiating safety. Registration number of the passport of certification 61 from 17.10.96Search in Google Scholar

5 Aleshin, S. S.; Bikeev, A. S.; Bolshagin, S. N.; Kalugin, M. A.; Kosourov, E. K.; Pavlovichev, A. M.; Pryanichnikov, A. V.; Sukhino-Khomenko, E. A.; Shcherenko, Anna I.; Shcherenko, Anastasia I.; Shkarovskiy, D.A.: Calculations of 3D full-scale VVER fuel assembly and core models using MCU and BIPR-7A codes. Kerntechnik80 (2015) 32610.3139/124.110505Search in Google Scholar

6 Aleshin, S. S.; Shcherenko, A. I.: Development of approximation method to evaluate isotopic composition of burnt fuel. Kerntechnik79 (2014) 28910.3139/124.110452Search in Google Scholar

7 Aleshin, S. S.; Gorodkov, S. S.; Shcherenko, A. I.: Usage of burnt fuel isotopic compositions from engineering codes in Monte-Carlo code calculations. Kerntechnik80 (2015) 39410.3139/124.110515Search in Google Scholar

8 Bolobov, P. A.; Lazarenko, A. P.; Tomilov, M.Ju.: Development of the code package KASKAD for calculations of VVERs. 19th SYMPOSIUM of AER, 2009Search in Google Scholar

Received: 2016-05-03
Published Online: 2016-08-10
Published in Print: 2016-08-26

© 2016, Carl Hanser Verlag, München

Articles in the same Issue

  1. Contents/Inhalt
  2. Contents
  3. Summaries/Kurzfassungen
  4. Summaries
  5. Editorial
  6. Research on the reactor physics and reactor safety of VVER reactors – AER Symposium 2015
  7. Technical Contributions/Fachbeiträge
  8. Monte-Carlo code calculation of 3D reactor core model with usage of burnt fuel isotopic compositions, obtained by engineering codes
  9. Xenon instability study of large core Monte Carlo calculations
  10. Error detection in core loading in the condition of asymmetrical distribution of power
  11. New models in VERONA 7.0 system
  12. Methodology for determining of the weighted mean coolant temperature in the primary circuit hot legs of WWER-1000 reactor plants
  13. Verification of three-dimensional neutron kinetics model of TRAP-KS code regarding reactivity variations
  14. Aspects of using a best-estimate approach for VVER safety analysis in reactivity initiated accidents
  15. Qualification of coupled 3D neutron kinetic/thermal hydraulic code systems by the calculation of a VVER-440 benchmark – re-connection of an isolated loop
  16. Uncertainties of the KIKO3D-ATHLET calculations using the Kalinin-3 benchmark (Phase II) data
  17. Coupled code analysis of uncertainty and sensitivity of Kalinin-3 benchmark
  18. Efficient introduction of natural uranium and thorium into nuclear energy system
  19. Economical aspects of multiple plutonium and uranium recycling in VVER reactors
  20. Neutronic analysis of absorbing materials for the control rod system in reactor ALLEGRO
  21. Uncertainty analysis and flow measurements in an experimental mock-up of a molten salt reactor concept
Downloaded on 11.12.2025 from https://www.degruyterbrill.com/document/doi/10.3139/124.110701/pdf
Scroll to top button