Home Technology High temperature reactors for cogeneration applications
Article
Licensed
Unlicensed Requires Authentication

High temperature reactors for cogeneration applications

  • K. Verfondern and H.-J. Allelein
Published/Copyright: April 19, 2016
Become an author with De Gruyter Brill

Abstract

There is a large potential for nuclear energy also in the non-electric heat market. Many industrial sectors have a high demand for process heat and steam at various levels of temperature and pressure to be provided for desalination of seawater, district heating, or chemical processes. The future generation of nuclear plants will be capable to enter the wide field of cogeneration of heat and power (CHP), to reduce waste heat and to increase efficiency. This requires an adjustment to multiple needs of the customers in terms of size and application. All Generation-IV concepts proposed are designed for coolant outlet temperatures above 500 °C, which allow applications in the low and medium temperature range. A VHTR would even be able to cover the whole temperature range up to approx. 1 000 °C.

Kurzfassung

Nuklearenergie besitzt ein großes Potential auch im Wärmemarkt. Viele Industrien haben einen hohen Bedarf an Prozesswärme und Prozessdampf bei unterschiedlichen Temperaturen und Drücken, einsetzbar z. B. bei der Meerwasserentsalzung, in Fernwärmenetzen oder in chemischen Prozessen. Die künftige Generation von Nuklearanlagen wird in der Lage sein, in das weite Feld der Kraft-Wärme-Kopplung einzudringen, um so den Verlust durch Abwärme zu verringern und gleichzeitig den Wirkungsgrad der Anlage zu erhöhen. Dies erfordert eine Anpassung an die Bedürfnisse der Industrien im Hinblick auf Größe und Anwendung. Alle Nuklearkonzepte der 4. Generation sind für Kählmittelaustrittstemperaturen > 500 °C ausgelegt, die Anwendungen im niedrigen und mittleren Temperaturbereich erlauben. Ein VHTR wäre sogar in der Lage, den gesamten Temperaturbereich bis zu rund 1 000 °C abzudecken.


* Corresponding author: E-mail:

References

1 OECD International Energy Agency: World Energy Outlook 2012, OECD/IEA, Paris, 2012Search in Google Scholar

2 United Nations Industrial Development Organization: Global Industrial Energy Efficiency Benchmarking, An Energy Policy Tool. UNIDO, Vienna, 2010Search in Google Scholar

3 International Atomic Energy Agency: Opportunities for Cogeneration with Nuclear Energy, Report in preparation. IAEA, ViennaSearch in Google Scholar

4 International Atomic Energy Agency: Status of Design Concepts of Nuclear Desalination Plants. IAEA TECDOC-1326, IAEA, Vienna, 2002Search in Google Scholar

5 International Atomic Energy Agency: Hydrogen Production Using Nuclear Energy. IAEA Nuclear Energy Series NP-T-4.2, IAEA, Vienna, 2013Search in Google Scholar

6 Yan, X. L.; Kasahara, S.; Tachibana, Y.; Kunitomi, K.: Study of a nuclear energy supplied steelmaking system for near-term application. Energy39 (2012) 15410.1016/j.energy.2012.01.047Search in Google Scholar

Received: 2015-12-22
Published Online: 2016-04-19
Published in Print: 2016-04-27

© 2016, Carl Hanser Verlag, München

Articles in the same Issue

  1. Contents/Inhalt
  2. Contents
  3. Summaries/Kurzfassungen
  4. Summaries
  5. Editorial
  6. Selected contributions from 1th Sino-German Symposium on Fundamentals of Advanced Nuclear Safety Technology
  7. Technical Contributions/Fachbeiträge
  8. Scientific codes developed and used at GRS – Nuclear simulation chain
  9. Challenges on innovations of newly-developed safety analysis codes
  10. Validation of system codes for plant application on selected experiments
  11. Progress of Experimental Research on Nuclear Safety in NPIC
  12. Severe accident research activities at Helmholtz-Zentrum Dresden-Rossendorf (HZDR)
  13. THAI experimental programme for containment safety assessment under severe accident conditions
  14. A spray cooling technique for spent fuel assembly stored in pool
  15. KIT multi-physics tools for the analysis of design and beyond design basis accidents of light water reactors
  16. Coupled neutronics/thermal-hydraulics and safety characteristics of liquid-fueled Molten Salt Reactors
  17. 10.3139/124.110680
  18. Validation of the ATHLET-SC code by trans-critical transient data
  19. Qualification of CFD-models for multiphase flows
  20. The reactor dynamics code DYN3D
  21. Critical flow phenomena and modeling in advanced nuclear safety technology
  22. 10.3139/124.110682
  23. Safety and security aspects in design of digital safety I&C in nuclear power plants
  24. Thermohydraulic safety issues for liquid metal cooled systems
  25. Design and safety analysis of the helium cooled solid breeder blanket for CFETR
  26. Qualification of pebble fuel for HTGRs
  27. High temperature reactors for cogeneration applications
Downloaded on 11.12.2025 from https://www.degruyterbrill.com/document/doi/10.3139/124.110694/html
Scroll to top button