Home Technology Qualification of pebble fuel for HTGRs
Article
Licensed
Unlicensed Requires Authentication

Qualification of pebble fuel for HTGRs

  • K. Verfondern and H.-J. Allelein
Published/Copyright: April 19, 2016
Become an author with De Gruyter Brill

Abstract

The German HTGR fuel development program for the HTR-Modul concept has resulted in a reference design based on LEU UO2 TRISO coated particle fuel in a spherical fuel element. The coated particles consist of minute uranium particle kernels coated with layers of carbon and silicon carbide. Analyses on quality of as-manufactured fuel, its behavior under HTR-Modul relevant operating and accident conditions have demonstrated excellent performance. Coated particles can withstand high internal gas pressure without releasing their fission products to the environment. International efforts are on-going for further improvement of coated particle fuel to meet the needs of future generation-IV HTR concepts.

Kurzfassung

Im Rahmen des deutschen Entwicklungsprogramms von Hochtemperaturreaktor-Brennstoff für das HTR-Modul-Konzept ist ein Referenzdesign entstanden, das auf TRISO-beschichteten Brennstoffpartikeln mit niedrig angereichertem Uran, die in einem kugelförmigen Brennelement eingebettet sind, beruht. Die Partikel bestehen aus winzigen Brennstoffkernen, die von Schichten aus Kolenstoff und Siliziumkarbid eingehüllt sind. Analysen des Brennstoffs bei der Herstellung, sowie beim Verhalten unter Betriebs- und simulierten Störfallbedingungen haben den hohen Grad an Qualität nachgewiesen. Die Partikel sind gegen hohe Innendrücke ausgelegt, ohne Spaltprodukte in die Umgebung freizusetzen. International wird dieses Brennstoffkonzept weiterentwickelt, um es an die Anforderungen künftiger HTR-Konzepte der vierten Generation anzupassen.


* Corresponding author: E-mail:

References

1 International Atomic Energy Agency: Advances in HTGR fuel technology. Report IAEA-TECDOC-1674, IAEA, Vienna, 2012Search in Google Scholar

2 International Atomic Energy Agency: High temperature gas cooled reactor fuels and materials. Report IAEA-TECDOC-1645, IAEA, Vienna, 2010Search in Google Scholar

3 Nabielek, H.; Verfondern, K.; Tang, C.; Ueta, S.: Burn-leach: The most important test in the manufacture of HTGR fuel. ANS Annual Meeting, Reno, NV, June 4–8, 2006Search in Google Scholar

4 Nickel, H.; Nabielek, H.; Pott, G.; Mehner, A.W.: Long time experience with the development of HTR fuel elements in Germany. Nucl. Eng. Des.217 (2002) 14110.1016/S0029-5493(02)00128-0Search in Google Scholar

5 Schenk, W.; Pitzer, D.; Nabielek, H.: Fission product release profiles from spherical HTR fuel elements at accident temperatures. Report Jül-2234, Research Center Jülich, 1988Search in Google Scholar

6 Freis, D.: Störfallsimulationen und Nachbestrahlungsuntersuchungen an kugelförmigen Brennelementen für Hochtemperaturreaktoren. PhD Thesis, Technical University RWTH Aachen, 2010Search in Google Scholar

Received: 2015-12-22
Published Online: 2016-04-19
Published in Print: 2016-04-27

© 2016, Carl Hanser Verlag, München

Articles in the same Issue

  1. Contents/Inhalt
  2. Contents
  3. Summaries/Kurzfassungen
  4. Summaries
  5. Editorial
  6. Selected contributions from 1th Sino-German Symposium on Fundamentals of Advanced Nuclear Safety Technology
  7. Technical Contributions/Fachbeiträge
  8. Scientific codes developed and used at GRS – Nuclear simulation chain
  9. Challenges on innovations of newly-developed safety analysis codes
  10. Validation of system codes for plant application on selected experiments
  11. Progress of Experimental Research on Nuclear Safety in NPIC
  12. Severe accident research activities at Helmholtz-Zentrum Dresden-Rossendorf (HZDR)
  13. THAI experimental programme for containment safety assessment under severe accident conditions
  14. A spray cooling technique for spent fuel assembly stored in pool
  15. KIT multi-physics tools for the analysis of design and beyond design basis accidents of light water reactors
  16. Coupled neutronics/thermal-hydraulics and safety characteristics of liquid-fueled Molten Salt Reactors
  17. 10.3139/124.110680
  18. Validation of the ATHLET-SC code by trans-critical transient data
  19. Qualification of CFD-models for multiphase flows
  20. The reactor dynamics code DYN3D
  21. Critical flow phenomena and modeling in advanced nuclear safety technology
  22. 10.3139/124.110682
  23. Safety and security aspects in design of digital safety I&C in nuclear power plants
  24. Thermohydraulic safety issues for liquid metal cooled systems
  25. Design and safety analysis of the helium cooled solid breeder blanket for CFETR
  26. Qualification of pebble fuel for HTGRs
  27. High temperature reactors for cogeneration applications
Downloaded on 11.12.2025 from https://www.degruyterbrill.com/document/doi/10.3139/124.110693/html
Scroll to top button