Qualification of pebble fuel for HTGRs
-
K. Verfondern
and H.-J. Allelein
Abstract
The German HTGR fuel development program for the HTR-Modul concept has resulted in a reference design based on LEU UO2 TRISO coated particle fuel in a spherical fuel element. The coated particles consist of minute uranium particle kernels coated with layers of carbon and silicon carbide. Analyses on quality of as-manufactured fuel, its behavior under HTR-Modul relevant operating and accident conditions have demonstrated excellent performance. Coated particles can withstand high internal gas pressure without releasing their fission products to the environment. International efforts are on-going for further improvement of coated particle fuel to meet the needs of future generation-IV HTR concepts.
Kurzfassung
Im Rahmen des deutschen Entwicklungsprogramms von Hochtemperaturreaktor-Brennstoff für das HTR-Modul-Konzept ist ein Referenzdesign entstanden, das auf TRISO-beschichteten Brennstoffpartikeln mit niedrig angereichertem Uran, die in einem kugelförmigen Brennelement eingebettet sind, beruht. Die Partikel bestehen aus winzigen Brennstoffkernen, die von Schichten aus Kolenstoff und Siliziumkarbid eingehüllt sind. Analysen des Brennstoffs bei der Herstellung, sowie beim Verhalten unter Betriebs- und simulierten Störfallbedingungen haben den hohen Grad an Qualität nachgewiesen. Die Partikel sind gegen hohe Innendrücke ausgelegt, ohne Spaltprodukte in die Umgebung freizusetzen. International wird dieses Brennstoffkonzept weiterentwickelt, um es an die Anforderungen künftiger HTR-Konzepte der vierten Generation anzupassen.
References
1 International Atomic Energy Agency: Advances in HTGR fuel technology. Report IAEA-TECDOC-1674, IAEA, Vienna, 2012Search in Google Scholar
2 International Atomic Energy Agency: High temperature gas cooled reactor fuels and materials. Report IAEA-TECDOC-1645, IAEA, Vienna, 2010Search in Google Scholar
3 Nabielek, H.; Verfondern, K.; Tang, C.; Ueta, S.: Burn-leach: The most important test in the manufacture of HTGR fuel. ANS Annual Meeting, Reno, NV, June 4–8, 2006Search in Google Scholar
4 Nickel, H.; Nabielek, H.; Pott, G.; Mehner, A.W.: Long time experience with the development of HTR fuel elements in Germany. Nucl. Eng. Des.217 (2002) 14110.1016/S0029-5493(02)00128-0Search in Google Scholar
5 Schenk, W.; Pitzer, D.; Nabielek, H.: Fission product release profiles from spherical HTR fuel elements at accident temperatures. Report Jül-2234, Research Center Jülich, 1988Search in Google Scholar
6 Freis, D.: Störfallsimulationen und Nachbestrahlungsuntersuchungen an kugelförmigen Brennelementen für Hochtemperaturreaktoren. PhD Thesis, Technical University RWTH Aachen, 2010Search in Google Scholar
© 2016, Carl Hanser Verlag, München
Articles in the same Issue
- Contents/Inhalt
- Contents
- Summaries/Kurzfassungen
- Summaries
- Editorial
- Selected contributions from 1th Sino-German Symposium on Fundamentals of Advanced Nuclear Safety Technology
- Technical Contributions/Fachbeiträge
- Scientific codes developed and used at GRS – Nuclear simulation chain
- Challenges on innovations of newly-developed safety analysis codes
- Validation of system codes for plant application on selected experiments
- Progress of Experimental Research on Nuclear Safety in NPIC
- Severe accident research activities at Helmholtz-Zentrum Dresden-Rossendorf (HZDR)
- THAI experimental programme for containment safety assessment under severe accident conditions
- A spray cooling technique for spent fuel assembly stored in pool
- KIT multi-physics tools for the analysis of design and beyond design basis accidents of light water reactors
- Coupled neutronics/thermal-hydraulics and safety characteristics of liquid-fueled Molten Salt Reactors
- 10.3139/124.110680
- Validation of the ATHLET-SC code by trans-critical transient data
- Qualification of CFD-models for multiphase flows
- The reactor dynamics code DYN3D
- Critical flow phenomena and modeling in advanced nuclear safety technology
- 10.3139/124.110682
- Safety and security aspects in design of digital safety I&C in nuclear power plants
- Thermohydraulic safety issues for liquid metal cooled systems
- Design and safety analysis of the helium cooled solid breeder blanket for CFETR
- Qualification of pebble fuel for HTGRs
- High temperature reactors for cogeneration applications
Articles in the same Issue
- Contents/Inhalt
- Contents
- Summaries/Kurzfassungen
- Summaries
- Editorial
- Selected contributions from 1th Sino-German Symposium on Fundamentals of Advanced Nuclear Safety Technology
- Technical Contributions/Fachbeiträge
- Scientific codes developed and used at GRS – Nuclear simulation chain
- Challenges on innovations of newly-developed safety analysis codes
- Validation of system codes for plant application on selected experiments
- Progress of Experimental Research on Nuclear Safety in NPIC
- Severe accident research activities at Helmholtz-Zentrum Dresden-Rossendorf (HZDR)
- THAI experimental programme for containment safety assessment under severe accident conditions
- A spray cooling technique for spent fuel assembly stored in pool
- KIT multi-physics tools for the analysis of design and beyond design basis accidents of light water reactors
- Coupled neutronics/thermal-hydraulics and safety characteristics of liquid-fueled Molten Salt Reactors
- 10.3139/124.110680
- Validation of the ATHLET-SC code by trans-critical transient data
- Qualification of CFD-models for multiphase flows
- The reactor dynamics code DYN3D
- Critical flow phenomena and modeling in advanced nuclear safety technology
- 10.3139/124.110682
- Safety and security aspects in design of digital safety I&C in nuclear power plants
- Thermohydraulic safety issues for liquid metal cooled systems
- Design and safety analysis of the helium cooled solid breeder blanket for CFETR
- Qualification of pebble fuel for HTGRs
- High temperature reactors for cogeneration applications