A spray cooling technique for spent fuel assembly stored in pool
-
Dao-Gang Lu
, Y. Wang , Hao-Liang Zhong , Xiao-Han Duan und Q. Cao
Abstract
For the safety of spent nuclear fuel assemblies stored in storage pool in the extreme condition where the water is lost completely, a passive spray cooling technique was designed, and its effectiveness has been validated by a functional experiment. The spray cooling characteristics of the spent fuel assembly have also been investigated by the experiment.
Kurzfassung
Zur Beherrschung der Situation, dass im Lagerbecken für abgebrannte Brennelemente das gesamte Wasser vollständig verloren geht wurde ein passives Spritzkühlverfahren entwickelt. Dessen Wirksamkeit wurde in einem Funktionsversuch validiert. Die Spritzkühleigenschaften der abgebrannten Brennstabbündel wurden bei dem Versuch ebenfalls untersucht.
References
1 Wu, X.; Li, W.: Analysis of the loss of pool cooling accident in a PWR spent fuel pool with MAAP5. Annals of Nuclear Energy72 (2014) 198–21310.1016/j.anucene.2014.05.030Suche in Google Scholar
2 Hung, T.-C.; Dhir, V. K.: The development of a three-dimensional transient CFD model for predicting cooling ability of spent fuel pools. Applied Thermal Engineering50 (2013) 496–50410.1016/j.applthermaleng.2012.06.042Suche in Google Scholar
3 Ye, C.; Zheng, M. G.: The design and simulation of a new spent fuel pool passive cooling system. Annals of Nuclear Energy58 (2013) 124–13110.1016/j.anucene.2013.03.007Suche in Google Scholar
4 Fleurot, J.; Lindholm, I.: Synthesis of spent fuel pool accident assessments using severe accident codes. Annals of Nuclear Energy74 (2014) 58–7110.1016/j.anucene.2014.07.011Suche in Google Scholar
© 2016, Carl Hanser Verlag, München
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Summaries/Kurzfassungen
- Summaries
- Editorial
- Selected contributions from 1th Sino-German Symposium on Fundamentals of Advanced Nuclear Safety Technology
- Technical Contributions/Fachbeiträge
- Scientific codes developed and used at GRS – Nuclear simulation chain
- Challenges on innovations of newly-developed safety analysis codes
- Validation of system codes for plant application on selected experiments
- Progress of Experimental Research on Nuclear Safety in NPIC
- Severe accident research activities at Helmholtz-Zentrum Dresden-Rossendorf (HZDR)
- THAI experimental programme for containment safety assessment under severe accident conditions
- A spray cooling technique for spent fuel assembly stored in pool
- KIT multi-physics tools for the analysis of design and beyond design basis accidents of light water reactors
- Coupled neutronics/thermal-hydraulics and safety characteristics of liquid-fueled Molten Salt Reactors
- 10.3139/124.110680
- Validation of the ATHLET-SC code by trans-critical transient data
- Qualification of CFD-models for multiphase flows
- The reactor dynamics code DYN3D
- Critical flow phenomena and modeling in advanced nuclear safety technology
- 10.3139/124.110682
- Safety and security aspects in design of digital safety I&C in nuclear power plants
- Thermohydraulic safety issues for liquid metal cooled systems
- Design and safety analysis of the helium cooled solid breeder blanket for CFETR
- Qualification of pebble fuel for HTGRs
- High temperature reactors for cogeneration applications
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Summaries/Kurzfassungen
- Summaries
- Editorial
- Selected contributions from 1th Sino-German Symposium on Fundamentals of Advanced Nuclear Safety Technology
- Technical Contributions/Fachbeiträge
- Scientific codes developed and used at GRS – Nuclear simulation chain
- Challenges on innovations of newly-developed safety analysis codes
- Validation of system codes for plant application on selected experiments
- Progress of Experimental Research on Nuclear Safety in NPIC
- Severe accident research activities at Helmholtz-Zentrum Dresden-Rossendorf (HZDR)
- THAI experimental programme for containment safety assessment under severe accident conditions
- A spray cooling technique for spent fuel assembly stored in pool
- KIT multi-physics tools for the analysis of design and beyond design basis accidents of light water reactors
- Coupled neutronics/thermal-hydraulics and safety characteristics of liquid-fueled Molten Salt Reactors
- 10.3139/124.110680
- Validation of the ATHLET-SC code by trans-critical transient data
- Qualification of CFD-models for multiphase flows
- The reactor dynamics code DYN3D
- Critical flow phenomena and modeling in advanced nuclear safety technology
- 10.3139/124.110682
- Safety and security aspects in design of digital safety I&C in nuclear power plants
- Thermohydraulic safety issues for liquid metal cooled systems
- Design and safety analysis of the helium cooled solid breeder blanket for CFETR
- Qualification of pebble fuel for HTGRs
- High temperature reactors for cogeneration applications