Home Technology Critical flow phenomena and modeling in advanced nuclear safety technology
Article
Licensed
Unlicensed Requires Authentication

Critical flow phenomena and modeling in advanced nuclear safety technology

  • Y. Z. Chen
Published/Copyright: April 19, 2016
Become an author with De Gruyter Brill

Abstract

The discharge could be non-choking or choking, depending on the break shape, length and conditions. This presents a challenge in the calculation of standard problems. A stable experiment of water was performed to study the break flow rate in nozzles of diameter of 1.41 and 2.0 mm with rounded-edge and sharp-edge. The pressure covered the ranges of 0.5 to 29.5 MPa, inlet quality 0 to 1.0 and subcooling up to 350 °C. The results exhibited a close relation of thermal non-equilibrium with pressure. For supercritical pressure a modified equilibrium model in combination with the Bernoulli equation is presented.

Kurzfassung

Das Verhalten von Flüssigkeiten beim Ausströmen hängt direkt von der Geometrie der Öffnung sowie von den dort herrschenden Betriebsbedingungen ab. Zur Entwicklung und Überprüfung von Berechnungsmodellen wurde ein Experiment mit einer Wasserausströmung aus einem Bruchquerschnitt durchgeführt. Dabei wurde der Massenstrom aus gerundeten und scharfkantigen Düsendurchmessern von 1.41 und 2.0 mm untersucht. Der Druckbereich lag zwischen 0.5 und 29.5 MPa, die Unterkühlung bei bis zu 350 °C und der Eintrittsgasgehalt zwischen 0 und 1.0. Die Ergebnisse zeigten einen starken Zusammenhang zwischen thermischem Nichtgleichgewicht und Druck. Für überkritische Drücke wird ein modifiziertes Gleichgewichtsmodell unter Berücksichtigung der Bernoulli-Gleichung präsentiert.

References

1 Trapp, J. A.; Ransom, V. H.: A Choked-Flow Calculation Criterion for Non-homogeneous, Non-equilibrium, Two-Phase Flows. Int. J. Multiphase Flow8 (1982) 66968110.1016/0301-9322(82)90070-2Search in Google Scholar

2 Henry, R. E.; Fauske, H. K.: The Two-Phase Critical Flow of One-Component Mixtures in Nozzles, Orifices, and Short Tubes. ASME, Trans. C, J. Heat Transfer93 (1971) 17918710.1115/1.3449782Search in Google Scholar

3 Kukita, Y.; Nakamura, H.; Watanabe, T.; et al.: ISP 26:ROSA-IV LSTF cold leg small break LOCA experiment comparison report. OECD/NEA, Paris, France. Feb. 1992Search in Google Scholar

4 Clement, P.; ChataingT.; Deruaz, R.: ISP 27: BETHSY small break LOCA with loss of HP injection. Nov. 1992, NEA/CSNI R(92) 20, Paris, FranceSearch in Google Scholar

5 Choi, K. Y.; Baek, W. P.; Cho, S.; Park, H. S.; Kang, K. H.; Kim, Y. S.: ISP-50, ATLAS Test, SB-DVI-09: 50% (6-inch) Break of DVI Line of the APR 1400. 2010, NEA/CSNI/R(2010)xSearch in Google Scholar

6 Chen, Y. Z.; Zhao, M. F.; Yang, C. S.; Bi, K. M.; Du, K. W.; Zhang, S. M.: Research on Critical Flow of Water under Supercritical Pressures in Nozzles. Journal of Energy and Power Engineering6 (2012) 201208Search in Google Scholar

Received: 2016-01-11
Published Online: 2016-04-19
Published in Print: 2016-04-27

© 2016, Carl Hanser Verlag, München

Articles in the same Issue

  1. Contents/Inhalt
  2. Contents
  3. Summaries/Kurzfassungen
  4. Summaries
  5. Editorial
  6. Selected contributions from 1th Sino-German Symposium on Fundamentals of Advanced Nuclear Safety Technology
  7. Technical Contributions/Fachbeiträge
  8. Scientific codes developed and used at GRS – Nuclear simulation chain
  9. Challenges on innovations of newly-developed safety analysis codes
  10. Validation of system codes for plant application on selected experiments
  11. Progress of Experimental Research on Nuclear Safety in NPIC
  12. Severe accident research activities at Helmholtz-Zentrum Dresden-Rossendorf (HZDR)
  13. THAI experimental programme for containment safety assessment under severe accident conditions
  14. A spray cooling technique for spent fuel assembly stored in pool
  15. KIT multi-physics tools for the analysis of design and beyond design basis accidents of light water reactors
  16. Coupled neutronics/thermal-hydraulics and safety characteristics of liquid-fueled Molten Salt Reactors
  17. 10.3139/124.110680
  18. Validation of the ATHLET-SC code by trans-critical transient data
  19. Qualification of CFD-models for multiphase flows
  20. The reactor dynamics code DYN3D
  21. Critical flow phenomena and modeling in advanced nuclear safety technology
  22. 10.3139/124.110682
  23. Safety and security aspects in design of digital safety I&C in nuclear power plants
  24. Thermohydraulic safety issues for liquid metal cooled systems
  25. Design and safety analysis of the helium cooled solid breeder blanket for CFETR
  26. Qualification of pebble fuel for HTGRs
  27. High temperature reactors for cogeneration applications
Downloaded on 27.1.2026 from https://www.degruyterbrill.com/document/doi/10.3139/124.110685/html
Scroll to top button