Home Qualification of CFD-models for multiphase flows
Article
Licensed
Unlicensed Requires Authentication

Qualification of CFD-models for multiphase flows

  • D. Lucas
Published/Copyright: April 19, 2016
Become an author with De Gruyter Brill

Abstract

While Computational Fluid Dynamics (CFD) is already an accepted industrial tool for single phase flows it is not yet mature for two-phase flows. For this reason the qualification of CFD for reactor safety relevant applications which involve multiphase flows is a present topic of research. At the CFD division of Helmholtz-Zentrum Dresden-Rossendorf (HZDR) hereby beside an application-oriented model development and validation also more generic investigations are done. Thus, the baseline model strategy aims on the consolidation of the CFD-modelling for multiphase to enable reliable predictions for well-defined flow pattern in future. In addition the recently developed GENTOP-concept broadens the range of applicability of CFD. Different flow morphologies including transitions between them can be considered in frame of this concept.

Kurzfassung

Während Computational Fluid Dynamics (CFD) für einphasige Strömungen bereits breite industrielle Anwendungen findet, ist sie für Zweiphasenströmungen noch nicht ausgereift. Daher ist die Qualifizierung von CFD für relevante Probleme der nuklearen Sicherheitsforschung mit Mehrphasenströmungen eine aktuelle Forschungsaufgabe. In der CFD-Abteilung des Helmholtz-Zentrums Dresden-Rossendorf (HZDR) werden dabei neben anwendungsorientierten Modellentwicklungen und -validierungen auch eher generische Entwicklungen durchgeführt. So zielt die Baseline-Modell-Strategie auf eine Konsolidierung der CFD für Mehrphasenströmungen, um in Zukunft zuverlässige Vorhersagen für gut definierte Strömungsformen zu ermöglichen. Das GENTOP-Konzept erweitert die Anwendbarkeit der CFD-Methoden. Im Rahmen dieses Konzepts können verschiedene Strömungsmorphologien einschließlich von Übergängen zwischen ihnen berücksichtigt werden.


* E-mail:

References

1 Lucas, D.; Rzehak, R.; Krepper, E.; ZiegenheinTh.; Liao, Y.; Kriebitzsch, S.; Apanasevich, P.: A strategy for the qualification of multi-fluid approacheds for nuclearreactor safety. Nucl. Eng. Design (2016) article in press10.1016/j.nucengdes.2015.07.007Search in Google Scholar

2 Bestion, D.: Applicability of two-phase CFD to nuclear reactor thermal-hydraulics and elaboration of Best Practice Guidelines. Nucl. Eng. Des.253 (2012) 31132110.1016/j.nucengdes.2011.08.068Search in Google Scholar

3 Rzehak, R.; Krepper, E.: Bubbly flows with fixed polydispersity: validation of a baseline closure model. Nucl. Eng. Des.287 (2015) 10811810.1016/j.nucengdes.2015.03.005Search in Google Scholar

4 Rzehak, R.; Ziegenhein, T.; Liao, Y.; Kriebitzsch, S.; Krepper, E.; Lucas, D.: Baseline model for simulation of bubbly flows. Chem. Eng. & Techn.38 (2015) 1972197810.1002/ceat.201500118Search in Google Scholar

5 Liao, Y.; Rzehak, R.; Lucas, D.; Krepper, E.: Baseline Closure Model for Dispersed Bubbly Flow: Bubble Coalescence and Breakup. Chem. Eng. Sci.122 (2015) 33634910.1016/j.ces.2014.09.042Search in Google Scholar

6 Porombka, P.; Höhne, T.: Drag and turbulence modelling for free surface flows within the two-fluid Euler-Euler framework. Chem. Eng. Sci.134 (2015) 34835910.1016/j.ces.2015.05.029Search in Google Scholar

7 Hänsch, S.; Lucas, D.; Krepper, E.; Höhne, T.: A multi-field two-fluid concept for transitions between different scales of interfacial structures. Int. J. Multiphase Flow47 (2012) 17118210.1016/j.ijmultiphaseflow.2012.07.007Search in Google Scholar

8 Krepper, E.; Lucas, D.; Frank, T.; Prasser, H.-M.; Zwart, P.: The inhomogeneous MUSIG model for the simulation of polydispersed flows. Nucl. Eng. Des.238 (2008) 1690170210.1016/j.nucengdes.2008.01.004Search in Google Scholar

9 Hänsch, S.; Lucas, D.; Höhne, T.; Krepper, E.: Application of a new concept for multi-scale interfacial structures to the dam-break case with an obstacle. Nucl. Eng. Des.279 (2014) 17118110.1016/j.nucengdes.2014.02.006Search in Google Scholar

Received: 2015-12-15
Published Online: 2016-04-19
Published in Print: 2016-04-27

© 2016, Carl Hanser Verlag, München

Articles in the same Issue

  1. Contents/Inhalt
  2. Contents
  3. Summaries/Kurzfassungen
  4. Summaries
  5. Editorial
  6. Selected contributions from 1th Sino-German Symposium on Fundamentals of Advanced Nuclear Safety Technology
  7. Technical Contributions/Fachbeiträge
  8. Scientific codes developed and used at GRS – Nuclear simulation chain
  9. Challenges on innovations of newly-developed safety analysis codes
  10. Validation of system codes for plant application on selected experiments
  11. Progress of Experimental Research on Nuclear Safety in NPIC
  12. Severe accident research activities at Helmholtz-Zentrum Dresden-Rossendorf (HZDR)
  13. THAI experimental programme for containment safety assessment under severe accident conditions
  14. A spray cooling technique for spent fuel assembly stored in pool
  15. KIT multi-physics tools for the analysis of design and beyond design basis accidents of light water reactors
  16. Coupled neutronics/thermal-hydraulics and safety characteristics of liquid-fueled Molten Salt Reactors
  17. 10.3139/124.110680
  18. Validation of the ATHLET-SC code by trans-critical transient data
  19. Qualification of CFD-models for multiphase flows
  20. The reactor dynamics code DYN3D
  21. Critical flow phenomena and modeling in advanced nuclear safety technology
  22. 10.3139/124.110682
  23. Safety and security aspects in design of digital safety I&C in nuclear power plants
  24. Thermohydraulic safety issues for liquid metal cooled systems
  25. Design and safety analysis of the helium cooled solid breeder blanket for CFETR
  26. Qualification of pebble fuel for HTGRs
  27. High temperature reactors for cogeneration applications
Downloaded on 4.10.2025 from https://www.degruyterbrill.com/document/doi/10.3139/124.110686/html
Scroll to top button