Abstract
This study is aimed to perform the coupled thermal-hydraulic/neutronic analysis of nanofluids as the coolant in the hot fuel assembly of VVER-1000 reactor core. Water-based nanofluid containing various volume fractions of Al2O3 nanoparticle is analyzed. WIMS and CITATION codes are used for neutronic simulation of the reactor core, calculating neutron flux and thermal power distribution. In the thermal-hydraulic modeling, the porous media approach is used to analyze the thermal behavior of the reactor core and the subchannel analysis is used to calculate the hottest fuel assembly thermal-hydraulic parameters. The derived conservation equations for coolant and conduction heat transfer equation for fuel and clad are discretized by Finite volume method and solved numerically using visual FORTRAN program. Finally the analysis results for nanofluids and pure water are compared together. The achieved results show that at low concentration (0.1 percent volume fraction) alumina is the optimum nanoparticles for normal reactor operation.
Abstract
In diesem Beitrag wird eine gekoppelte neutronenphysikalische und thermodynamische Analyse von Nanofluiden als Kühlmittel in der Brennelement-Anordnung eines VVER-Reaktorkerns durchgeführt. Nanofluide auf Wasser-Basis, die verschiedene Volumenanteile von Al2O3 Nanopartikeln enthalten, wurden analysiert. WIMS und CITATION-Codes wurden für die neutronenphysikalische Simulation des Reaktorkerns verwendet. Bei der thermohydraulischen Modellierung wurde der Porous-Media-Ansatz zur Analyse des Wärmeverhaltens des Reaktorkerns verwendet und die Unterkanalanalyse wurde zur Berechnung der thermohydraulischen Parameter der heißesten Brennelement-Anordnung verwendet. Erhaltungsgleichungen und Wärmeübertragungseigenschaften wurden für Brennelemente und Hülle abgeleitet und mit Hilfe der Finite-Volumen-Methode diskretisiert und numerisch gelöst. Die Ergebnisse der Nanofluid-Analyse wurden verglichen mit den Ergebnissen für reines Wasser. Es zeigt sich, dass bei niedrigen Konzentrationen (0.1% Volumenanteile) Aluminiumoxid die optimalen Nanopartikel für den normalen Reaktorbetrieb sind.
Nomenclature
- A
flow area [m2]
- C
specific heat capacity [J/kgK]
- cba
critical boron concentration in the primary coolant loop [g/kg]
- d
nanoparticle diameter [nm]
- i
enthalpy [J/kg]
- g
gravitational acceleration [m/s2]
- h
convective heat transfer coefficient [w/K]
- H10
location of control rods of type 10 [%]
- K
thermal conductivity, [w/mK]
- kB
Boltzman constant (1.3807 × 10–23) [J/K]
- kG
pressure drop coefficient
- l
Center to center distance between two adjacent channels [m]
- N
reactor thermal power [Mw]
- Nu
Nusselt number
- P
pressure [Pa]
- Pr
Prandtl number
- q′
linear heat rate [w/m]
- q′′
heat flux [w/m2]
- q′′′
volumetric heat generation [w/m3]
- r
radius[m]
- Rem
modified Reynolds number
- Re
Reynolds number
- Sk
lateral length in “k” gap [m]
- sl
lateral closed physical area [m2]
- T
temperature [K]
- teff
effective time [day]
- T
coolant temperature [8C]
- u
internal energy [J/kg]
- v
velocity [m/s]
- w
mass flow [kg/s]
Greek symbols
- α
molecular thermal diffusivity [m2/s]
- γ
porosity
- μ
viscosity [Nsm–1]
- ρ
density [kg/m3]
- φ
volume fraction
- Φ
dissipation function [w/m3]
- Ψ
correction factor
- τ
Shear stress [Pa]
Subscripts
- b
coolant bulk
- ci
clad inner surface
- co
clad outer surface
- c.t.
circular tube
- f
base fluid
- fo
fuel outer surface
- g
gas
- l, l0
channel Number
- nf
nanofluids
- p
nanoparticle
- w
wall surface
References
1 Lee, S.; Choi, S.; Li, S.; Eastman, J.: Measuring thermal conductivity model for nanofluids. J Nanopart Res, 6 (1999) 577–588Suche in Google Scholar
2 Choi, S. U.S.; Zhang, Z. G.; Yu, W.; Lockwood, F. E.; Grulke, E. A.: Anomalous thermal conductivity enhancement in nano-tube suspensions, Applied Physics Letters, 79 (2001) 2252–2254, DOI:10.1063/1.140827210.1063/1.1408272Suche in Google Scholar
3 Das, S. K.; Putra, N.; Thiesen, P.; Roetzel, W.: Temperature dependence of thermal conductivity enhancement for nanofluids, Journal of Heat Transfer, 125 (2003) 567–574, DOI:10.1115/1.157108010.1115/1.1571080Suche in Google Scholar
4 Xuan, Y.; Li, Q.: Investigation of Convective Heat Transfer and Flow Features of Nanofluids, Journal of Heat Transfer, 125 (2003) 151–153, DOI:10.1115/1.153200810.1115/1.1532008Suche in Google Scholar
5 Bang, I. C.; Chang, S. H.: Boiling heat transfer performance and phenomena of Al2O3-water nano-fluids from a plain surface in a pool, International Journal of Heat and Mass Transfer 48, (2005) 2407–2419, DOI:10.1016/j.ijheatmasstransfer.2004.12.04710.1016/j.ijheatmasstransfer.2004.12.047Suche in Google Scholar
6 Kukarni, P. D.; Das, K. D.; Chukwu, A. G.: Temperature Dependent Rheological Property of Copper Oxide Nanoparticle Suspension (Nanofluid), Journal of Nanoscience and Nanotechnology, 6 (2006) 1150–1154, DOI:10.1166/jnn.2006.18710.1166/jnn.2006.187Suche in Google Scholar PubMed
7 Zeinali Heris, S.; Etemad, S. G.: Nasr Esfahany, M.; Convective heat transfer of a Cu/water nanofluid flowing through a circular tube. Exp Heat Transf., 22 (2009) 217–227, DOI:10.1080/0891615090295014510.1080/08916150902950145Suche in Google Scholar
8 Wu, C.; Cho, T. J.; Xu, J.; Lee, D.; Yang, B.; Zachariah, M. R.: Effect of nanoparticle clustering on the effective thermal conductivity of concentrated silica colloids, Phys. Rev. E, 81 (2010) 011406, PMid:20365372; DOI:10.1103/PhysRevE.81.01140610.1103/PhysRevE.81.011406Suche in Google Scholar PubMed
9 Buongiorno, J.; Truong, B.: Preliminary study of water-based nanofluid coolants for PWRs. Trans. Am. Nucl. Soc. 92 (2005) 383–384Suche in Google Scholar
10 Buongiorno, J.; Hu, L. W.; Kim, S. J.; Hannink, R.; Truong B.; Forrest, E.: Nanofluids for enhanced economics and safety of nuclear reactors: An evaluation of the potential features, issues and research gaps. Nucl. Technol., 162 (2008) 80–9110.13182/NT08-A3934Suche in Google Scholar
11 Ghazanfari, V.; Talebi, M.; Khorsandi, J.; Abdolahi, R.: Thermal–hydraulic modeling of water/Al2O3 nanofluid as the coolant in annular fuels for a typical VVER-1000 core, Progress in Nuclear Energy, 87 (2016) 67–73, DOI:10.1016/j.pnucene.2015.11.00810.1016/j.pnucene.2015.11.008Suche in Google Scholar
12 Zarifi, E.; Tashakor, S.: Subchannel analysis of Al2O3 nanofluid as the coolant in VMHWR, KERNTECHNIK, 80 (2015) 440–448, DOI:10.3139/124.11054210.3139/124.110542Suche in Google Scholar
13 Abbassia, Y; Talebib, M.; Shirania, A. S.; Khorsandi, J.: Experimental investigation of TiO2/Water nanofluid effects on heat transfer characteristics of a vertical annulus with non-uniform heat flux in non-radiation environment, Annals of Nuclear Energy, 69 (2014) 7–13, DOI:10.1016/j.anucene.2014.01.03310.1016/j.anucene.2014.01.033Suche in Google Scholar
14 Zarifi, E.: Jahanfarnia, G.; Subchannel analysis of TiO2 nanofluid as the coolant in VVER-1000 reactor, Progress in Nuclear Energy, 73 (2014) 140–152, DOI:10.1016/j.pnucene.2014.02.00410.1016/j.pnucene.2014.02.004Suche in Google Scholar
15 Zarifi, E.; Jahanfarnia, G.; Veisy, F.: Subchannel Analysis of Nanofluids Application to VVER-1000 Reactor, Chemical Engineering Research and Design, 91 (2013) 625–632, DOI:10.1016/j.cherd.2013.01.01810.1016/j.cherd.2013.01.018Suche in Google Scholar
16 Zarifi, E.; Jahanfarnia, G.; Veisy, F.: Neutronic simulation of water-based Nanofluids as a Coolant in VVER-1000 Reactor, Progress in Nuclear Energy, 65 (2013) 32–41, DOI:10.1016/j.pnucene.2013.01.00410.1016/j.pnucene.2013.01.004Suche in Google Scholar
17 Zarifi, E.; Jahanfarnia, G.; Veisy, F.: Thermal-hydraulic modeling of nanofluids as the coolant in VVER-1000 reactor core by the porous media approach, Annals of Nuclear Energy, 51 (2013) 203–212, DOI:10.1016/j.anucene.2012.07.04110.1016/j.anucene.2012.07.041Suche in Google Scholar
18 Zarifi, E.; Jahanfarnia, G.; Veisy, F.: Neutronic Analysis of Nanofluids as a Coolant in Bushehr VVER-1000 Reactor, Nukleonika, 52 (2012) 375–381Suche in Google Scholar
19 Nazififard, M.; Nematollahi, M.; Jafarpur, K.; Suh, K. Y.: Numerical Simulation ofWater-Based Alumina Nanofluid in Subchannel Geometry, Science and Technology of Nuclear Installations, 928406 (2012) 1–12, DOI:10.1155/2012/92840610.1155/2012/928406Suche in Google Scholar
20 Hadad, K.; Hajizadeh, A.; Jafarpour, K.; Ganapo, B. D.: Neutronic study of nanofluids application to VVER-1000, Ann. Nucl. Energy, 37 (2010) 1447–1455, DOI:10.1016/j.anucene.2010.06.02010.1016/j.anucene.2010.06.020Suche in Google Scholar
21 Faghihia, F.; Mirvakilib, S. M.; Safaeib, S.; Bagheri, S.: Neutronics and sub-channel thermal-hydraulics analysis of the Iranian VVER-1000 fuel bundle, Progress in Nuclear Energy, 87 (2016) 39–46, DOI:10.1016/j.pnucene.2015.10.02010.1016/j.pnucene.2015.10.020Suche in Google Scholar
22 Safarzadeh, O.; Shirani, A. S.; Minuchehr, A.; Saadatian-derakhshandeh, F.: Coupled neutronic/thermo-hydraulic analysis of water/Al2O3 nanofluids in a VVER-1000 reactor, Annals of Nuclear Energy, 65 (2014) 72–77, DOI:10.1016/j.anucene.2013.10.03610.1016/j.anucene.2013.10.036Suche in Google Scholar
23 NEA, WIMSD-5B (98/11), Deterministic Multi-group Reactor Lattice Calculations, 1999Suche in Google Scholar
24 Fowler, T. B.: CITATION-LDI2 Nuclear Reactor Core Analysis Code System. CCC-643. Oak Ridge National Laboratory, Oak Ridge, Tennessee, 1999Suche in Google Scholar
25 Ransom, V. H.; Wagner, R. J.; Trapp, J. A.; Johnsen, G. W.; Miller, C. S.; Kiser, D. M.; Riemke, R. A.: RELAP5/MOD3: code manual: user guide and input requirements, 1990Suche in Google Scholar
26 Downar, T.; Lee, D.; Xu, Y.; Kozlowski, T.; Staudenmier, J.: PARCS v2.6 U.S. NRC Core Neutronics Simulator THEORY MANUAL, 2007Suche in Google Scholar
27 Basile, D.; Beghi, M.; Chierici, R.; Salina, E.; Brega, E.: COBRAEN, an updated version of the COBRA-3C/MIT code for thermal-hydraulic transient analysis of light water reactor fuel assemblies and cores. Report no. 1010/1, Italy, 1999Suche in Google Scholar
28 Hendricks, J. S.; McKinney, G.W.; Fensin, M. L.; James, M. R.; Johns, R. C.; Durkee, J. W.; Finch, J. P.; Pelowitz, D. B.; Waters, L. S.: MCNPX, Version 26E, Los Alamos National Laboratory Report LA-UR-07-6632, 2007Suche in Google Scholar
29 FSAR of BNPP-1, Final Safety Analysis Report of Bushehr Nuclear Power Plant, Ministry of Russian Federation of Atomic Energy (Atomenergoproekt), Moscow, 2003Suche in Google Scholar
30 AEOI, Album of Neutron and Physical Characteristics of the 1st Loading of Bushehr nuclear power plant, 14.BU.1 0.YM.TM.KC PRR103, Tehran, Iran, 2010Suche in Google Scholar
31 Todreas, N. E.; Kazimi, M. S.: Nuclear system II, Elements of Thermal-hydraulic Design, Taylor & Francis, USA, 1990Suche in Google Scholar
32 Ainscough, J. B.: Gap conductance in zircaloy- clad LWR fuel rods. OECD nuclear energy agency.CSNI report no, 72, 1982Suche in Google Scholar
33 Velagapudi, V.; Konijeti, R. K.; Auru, C. S.: Empirical correlation to predict thermophysical and heat transfer characteristics of nanofluids, THERMAL SCIENCE, 12 (2008) 27–37, DOI:10.2298/TSCI0802027V10.2298/TSCI0802027VSuche in Google Scholar
34 Jang, S. P.; Choi, S. U. S.: Role of Brownian motion in the Enhanced Thermal Conductivity of Nanofluid, Applied Physic Letters, 84 (2004) 4316–4318, DOI:10.1063/1.175668410.1063/1.1756684Suche in Google Scholar
35 Pak, B. C.; Cho, Y. I.: Hydrodynamic and Heat Transfer Study of Dispersed Fluids with Submicron Metallic Oxide Particle, Experimental Heat Transfer, 11 (1998) 151–170, DOI:10.1080/0891615980894655910.1080/08916159808946559Suche in Google Scholar
36 Markoczy, G.: Convective heat transfer in rod clusters with turbulent axial coolant flow. I. Mean value over the rod perimeter. Wärme und Stoffübertragung 5 (1972) 204Suche in Google Scholar
Books · Bücher
Uranium 2016: Resources, Production and Demand. NEA report No. 7301, Published by OECD/NEA, 2016, 548 pp., in English, available online at: http://www.oecd-nea.org/ndd/pubs/2016/7301-uranium-2016.pdf
Uranium is the raw material used to produce fuel for long-lived nuclear power facilities, necessary for the generation of significant amounts of baseload low-carbon electricity for decades to come. Although a valuable commodity, declining market prices for uranium in recent years, driven by uncertainties concerning evolutions in the use of nuclear power, have led to the postponement of mine development plans in a number of countries and to some questions being raised about future uranium supply. This 26th edition of the “Red Book”, a recognised world reference on uranium jointly prepared by the Nuclear Energy Agency (NEA) and the International Atomic Energy Agency (IAEA), provides analyses and information from 49 producing and consuming countries in order to address these and other questions. The present edition provides the most recent review of world uranium market fundamentals and presents data on global uranium exploration, resources, production and reactor-related requirements. It offers updated information on established uranium production centres and mine development plans, as well as projections of nuclear generating capacity and reactor-related requirements through 2035, in order to address long-term uranium supply and demand issues.
© 2017 Carl Hanser Verlag GmbH & Co. KG
Artikel in diesem Heft
- Frontmatter
- Best estimate approach for the evaluation of critical heat flux phenomenon in the boiling water reactors
- Coupled neutronic core and subchannel analysis of nanofluids in VVER-1000 type reactor
- PCTRAN enhancement for large break loss of coolant accident concurrent with loss of offsite power in VVER-1000 simulation
- Experimental study of natural circulation flow instability in rectangular channels
- Exerimental method and preliminary studies of the passive containment water film evaporation mass transfer
- Automated generation of burnup chain for reactor analysis applications
- Fission source sampling in coupled Monte Carlo simulations
- Hysteresis phenomenon in nuclear reactor dynamics
- Investigation of neutronic and safety parameters variation in 5 MW research reactor due to U3O8Al fuel conversion to ThO2 + U3O8Al
- Implementation of meso-scale radioactive dispersion model for GPU
- Solution of the multilayer multigroup neutron diffusion equation in cartesian geometry by fictitious borders power method
- Half-space albedo problem with modified FN method for linear and quadratic anisotropic scattering
Artikel in diesem Heft
- Frontmatter
- Best estimate approach for the evaluation of critical heat flux phenomenon in the boiling water reactors
- Coupled neutronic core and subchannel analysis of nanofluids in VVER-1000 type reactor
- PCTRAN enhancement for large break loss of coolant accident concurrent with loss of offsite power in VVER-1000 simulation
- Experimental study of natural circulation flow instability in rectangular channels
- Exerimental method and preliminary studies of the passive containment water film evaporation mass transfer
- Automated generation of burnup chain for reactor analysis applications
- Fission source sampling in coupled Monte Carlo simulations
- Hysteresis phenomenon in nuclear reactor dynamics
- Investigation of neutronic and safety parameters variation in 5 MW research reactor due to U3O8Al fuel conversion to ThO2 + U3O8Al
- Implementation of meso-scale radioactive dispersion model for GPU
- Solution of the multilayer multigroup neutron diffusion equation in cartesian geometry by fictitious borders power method
- Half-space albedo problem with modified FN method for linear and quadratic anisotropic scattering