Startseite Technik Usage of burnt fuel isotopic compositions from engineering codes in Monte-Carlo code calculations
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Usage of burnt fuel isotopic compositions from engineering codes in Monte-Carlo code calculations

  • S. S. Aleshin , S. S. Gorodkov und A. I. Shcherenko
Veröffentlicht/Copyright: 24. August 2015
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

A burn-up calculation of VVER's cores by Monte-Carlo code is complex process and requires large computational costs. This fact makes Monte-Carlo codes usage complicated for project and operating calculations. Previously prepared isotopic compositions are proposed to use for the Monte-Carlo code (MCU) calculations of different states of VVER's core with burnt fuel. Isotopic compositions are proposed to calculate by an approximation method. The approximation method is based on usage of a spectral functionality and reference isotopic compositions, that are calculated by engineering codes (TVS-M, PERMAK-A). The multiplication factors and power distributions of FA and VVER with infinite height are calculated in this work by the Monte-Carlo code MCU using earlier prepared isotopic compositions. The MCU calculation data were compared with the data which were obtained by engineering codes.

Kurzfassung

Die Berechnung des Abbrands eines WWER-Kerns mit einem Monte-Carlo-Programm ist komplex und erfordert einen sehr hohen Rechenaufwand. Daher ist die Nutzung von Monte-Carlo-Programmen für Betriebs- und Projektrechnungen selten. In diesem Beitrag wird gezeigt, dass vorbereitete isotope Brennstoffzusammensetzungen sehr gut als Eingangsgrößen für Monte-Carlo-Berechnungen verschiedener Kernzustände mit abgebranntem Brennstoff geeignet sind. Dabei werden die isotopen Brennstoffzusammensetzungen mit der Näherungsmethode basierend auf der Nutzung der spektralen Funktionalität und einer Referenzzusammensetzung mit Programmen wie TVS-M oder PERMAK-A berechnet. So werden die Multiplikationsfaktoren und der Leistungsverteilung von Brennelementen für WWER mit dem Monte-Carlo-Programm MCU bestimmt und mit den Ergebnissen der Programme TVS-M und PERMAK-A verglichen.


* E-mail:

References

1 GominE.A.; MajorovL.V.; et al.: Program MCU-RFFI/A with library of constants DLC/MCUDAT-1.0. Federal supervision of Russia on nuclear and radiating safety. Registration number of the passport of certification 61 from 17.10.96Suche in Google Scholar

2 Aleshin;S. S.; Shcherenko, A. I.: Development of approximation method to evaluate isotopic composition of burnt fuel. Kerntechnik79 (2014) 28929410.3139/124.110452Suche in Google Scholar

3 TVS-M Code (TVS-M Version 1.4). Software registration No.611 of 31.07.2006. Software qualification certificate No.239 of 23.09.2008Suche in Google Scholar

4 Bolobov, P. A.; Lazarenko, A. P.; Tomilov, M. Ju.: Development of the code package KASKAD for calculations of VVERs. 19th SYMPOSIUM of AER, 2009.Suche in Google Scholar

Received: 2015-01-28
Published Online: 2015-08-24
Published in Print: 2015-08-27

© 2015, Carl Hanser Verlag, München

Artikel in diesem Heft

  1. Contents/Inhalt
  2. Contents
  3. Summaries/Kurzfassungen
  4. Summaries
  5. Editorial
  6. Research on the reactor physics and reactor safety of VVER reactors – AER Symposium 2014
  7. Technical Contributions/Fachbeiträge
  8. Assessment of the uncertainties of MULTICELL calculations by the OECD NEA UAM PWR pin cell burnup benchmark
  9. Development of codes and KASKAD complex
  10. Applying full multigroup cell characteristics from MCU code to finite difference calculations of neutron field in VVER core
  11. Calculations of 3D full-scale VVER fuel assembly and core models using MCU and BIPR-7A codes
  12. An analysis of reactivity prediction during the reactor start-up process
  13. Experimental and computational investigations of heat and mass transfer of intensifier grids
  14. Implementation of CFD module in the KORSAR thermal-hydraulic system code
  15. Numerical and experimental investigation of 3D coolant temperature distribution in the hot legs of primary circuit of reactor plant with WWER-1000
  16. Analyses of Beyond Design Basis Accident Homogeneous Boron Dilution Scenarios
  17. Analysis of heterogeneous boron dilution transients during outages with APROS 3D nodal core model
  18. Prospects of subcritical molten salt reactor for minor actinides incineration in closed fuel cycle
  19. Usage of burnt fuel isotopic compositions from engineering codes in Monte-Carlo code calculations
  20. Neutron-kinetic and thermo-hydraulic uncertainties in the study of Kalinin-3 benchmark
  21. Inter-assembly gap deviations in VVER-1000: Accounting for effects on engineering margin factors
Heruntergeladen am 10.12.2025 von https://www.degruyterbrill.com/document/doi/10.3139/124.110515/pdf?lang=de
Button zum nach oben scrollen