Startseite Technik An analysis of reactivity prediction during the reactor start-up process
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

An analysis of reactivity prediction during the reactor start-up process

  • J. Bajgl , V. Krýsl und J. Švarný
Veröffentlicht/Copyright: 24. August 2015
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The different VVER-440 core fuel loadings subcriticality evaluations are performed during the start-up process by boron dilution or control assembly withdrawn by macrocode MOBY-DICK calculations. The dynamic reactivity and quasicritical reactivity are compared and sensitivity of reactivity prediction at the low boundary of start-up interval (ρ = −0,01) has been provided on the basis of different modelling of ionization chamber (IC) response calculation. Special attention is paid to the impact of power distribution and spontaneous fission distribution form factor on IC response correction during control assembly movement. Precision and robustness of different corrections of IC signal processing in real core start-up processed IC signals was evaluated.

Kurzfassung

Verschiedene unterkritische Zustände eines WWER-Kerns während des Hochfahrens mit Borsäureverdünnung oder Steuerelementziehen wurden mit dem Programm MOBY-DICK durchgeführt. Dabei wurden die Werte der dynamischen und der quasikritischen Reaktivität verglichen und die Sensitivität der Vorausberechnung der Reaktivität an der unteren Grenze des Startintervalls (ρ = −0,01) bestimmt. Dabei wurden unterschiedliche Modellierungen der Ionisationskammerantwort verwendet. Besonderes Augenmerk wurde auf den Einfluss der Leistungverteilung und den Verteilungsformfaktor der spontanen Spaltung während des Verfahrens der Kontrollstäbe gelegt. Genauigkeit und Robustheit verschiedener Korrekturen der Signalverarbeitung wurden am Beispiel realistischer Anfahrsignale untersucht.


* E-mail:

References

1 Bajgl, J.: Correction of ionisation chambers readings for L3P subcritical states, 22nd Symposium of AER, Pruhonice 2012, Czech RepublicSuche in Google Scholar

2 Švarný, J.; Krýsl, V.: Rod drop experiment analysis provided in Skoda JS, 10th Sympozium of AER, Moscow, September 2000, RussiaSuche in Google Scholar

3 Krýsl, V.; et al.: MOBY-DICK code (version mdredws_dfwCH), 2014Suche in Google Scholar

4 Sedláček, M.; Elko, M.: (VÚJE Trnava), personal recommendation, 2012Suche in Google Scholar

Received: 2015-02-18
Published Online: 2015-08-24
Published in Print: 2015-08-27

© 2015, Carl Hanser Verlag, München

Artikel in diesem Heft

  1. Contents/Inhalt
  2. Contents
  3. Summaries/Kurzfassungen
  4. Summaries
  5. Editorial
  6. Research on the reactor physics and reactor safety of VVER reactors – AER Symposium 2014
  7. Technical Contributions/Fachbeiträge
  8. Assessment of the uncertainties of MULTICELL calculations by the OECD NEA UAM PWR pin cell burnup benchmark
  9. Development of codes and KASKAD complex
  10. Applying full multigroup cell characteristics from MCU code to finite difference calculations of neutron field in VVER core
  11. Calculations of 3D full-scale VVER fuel assembly and core models using MCU and BIPR-7A codes
  12. An analysis of reactivity prediction during the reactor start-up process
  13. Experimental and computational investigations of heat and mass transfer of intensifier grids
  14. Implementation of CFD module in the KORSAR thermal-hydraulic system code
  15. Numerical and experimental investigation of 3D coolant temperature distribution in the hot legs of primary circuit of reactor plant with WWER-1000
  16. Analyses of Beyond Design Basis Accident Homogeneous Boron Dilution Scenarios
  17. Analysis of heterogeneous boron dilution transients during outages with APROS 3D nodal core model
  18. Prospects of subcritical molten salt reactor for minor actinides incineration in closed fuel cycle
  19. Usage of burnt fuel isotopic compositions from engineering codes in Monte-Carlo code calculations
  20. Neutron-kinetic and thermo-hydraulic uncertainties in the study of Kalinin-3 benchmark
  21. Inter-assembly gap deviations in VVER-1000: Accounting for effects on engineering margin factors
Heruntergeladen am 10.12.2025 von https://www.degruyterbrill.com/document/doi/10.3139/124.110507/html?lang=de
Button zum nach oben scrollen