Startseite Technik Applying full multigroup cell characteristics from MCU code to finite difference calculations of neutron field in VVER core
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Applying full multigroup cell characteristics from MCU code to finite difference calculations of neutron field in VVER core

  • S. S. Gorodkov und M. A. Kalugin
Veröffentlicht/Copyright: 24. August 2015
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Up to now core calculations with Monte Carlo provided only average cross-sections of mesh cells for further use either in finite difference calculations or as benchmark ones for approximate spectral algorithms. Now MCU code is capable to handle functions, which may be interpreted as average diffusion coefficients. Subsequently the results of finite difference calculations with cells characteristic sets obtained in such a way can be compared with Monte Carlo results as benchmarks, giving reliable information on quality of production code under consideration. As an example of such analysis, the results of mesh calculations with 1-, 2-, 4-, 8- and 12 neutron groups of some model VVER fuel assembly are presented in comparison with the exact Monte Carlo solution. As a second example, an analysis is presented of water gap approximate enlargement between fuel assemblies, allowing VVER core region be covered by regular mesh.

Kurzfassung

Bislang lieferten Rechnungen mit Monte-Carlo-Programmen über dem Querschnitt gemittelte Ergebnisdaten, die dann in Finite-Differenzen-Rechnungen oder Rechnungen mit approximierten Spektralalgorithmen einflossen. In diesem Beitrag wird eine Erweiterung vorgestellt, mit der MCU-Programme Ergebnisse liefern, die als gemittelte Diffusionskoeffizienten interpretiert werden. Damit wird der Vergleich der Ergebnisdaten und die Verwendung dieser vereinfacht. Dies wird an zwei Beispielen gezeigt: Im ersten Beispiel werden Ergebnisse von Berechnungen für ein WWER-Brennelement mit 1, 2, 4, 8 und 12 Neutronengruppen mit den Monte-Carlo-Lösungen verglichen. Im zweiten Beispiel wird eine Rechnung beschrieben, bei der die Nodalisierung des Wasserspalts zwischen Brennelementen derart verbessert wurde, dass die WWER-Kernregion mit einem regulären Gitter abgebildet werden konnte.


* E-mail:

References

1 Gomin, E. A.; Majorov, L. V. et al.: The Status of MCU-5. Physics of Atomic Nuclei75 (2012) 1634164610.1134/S1063778812140025Suche in Google Scholar

2 Yoshioka, K.; Takeuchi, T.; Kitamura, T.; Sakurai, S.: Multi-Group Constants Generation System for 3D-Core Simulation Using a Continuous Energy Monte Carlo Technique. Progress in Nuclear Science and Technology2 (2011) 33434010.15669/pnst.2.334Suche in Google Scholar

3 Van Rooijen, W. F. G.; Chiba, G.: Diffusion coefficients for LMFBR cells calculated with MOC and Monte Carlo Methods. Annals of Nuclear Energy38 (2011) 13314410.1016/j.anucene.2010.08.004Suche in Google Scholar

4 Van Rooijen, W. F. G.; Hazama, T.; Takeda, T.: Monte Carlo Based Diffusion Coefficients for LMFBR Analysis. Joint Int. Conf. on Supercomputing in Nuclear Applications and Monte Carlo 2010 (SNA+MC2010), Tokyo, Japan, October 17–21, 2010Suche in Google Scholar

5 Gorodkov, S. S.; Kalugin, M. A.: Monte Carlo calculation of the diffusion coefficient of nuclear reactor cells. Atomic Energy106 (2009) 231237 (unauthorized translation) 10.1007/s10512-009-9157-7Suche in Google Scholar

6 Bolobov, P. A.; Oleksuk, D. A.: The Development Of The Code Package PERMAK3-D/SC-1. 21st Symposium of AER on VVER Reactor Physics and Reactor Safety, September 19–23 2011, Dresden, GermanySuche in Google Scholar

7 Gorodkov, S. S.: A Vectorized Nodal-Type Algorithm for Large Power Reactor Coarse-Mesh Code HEM-3. Proc. Topic. Meet. on Adv. in React. Ph., Charleston, USA 1992, vol. 1, p. 8798Suche in Google Scholar

Received: 2015-01-26
Published Online: 2015-08-24
Published in Print: 2015-08-27

© 2015, Carl Hanser Verlag, München

Artikel in diesem Heft

  1. Contents/Inhalt
  2. Contents
  3. Summaries/Kurzfassungen
  4. Summaries
  5. Editorial
  6. Research on the reactor physics and reactor safety of VVER reactors – AER Symposium 2014
  7. Technical Contributions/Fachbeiträge
  8. Assessment of the uncertainties of MULTICELL calculations by the OECD NEA UAM PWR pin cell burnup benchmark
  9. Development of codes and KASKAD complex
  10. Applying full multigroup cell characteristics from MCU code to finite difference calculations of neutron field in VVER core
  11. Calculations of 3D full-scale VVER fuel assembly and core models using MCU and BIPR-7A codes
  12. An analysis of reactivity prediction during the reactor start-up process
  13. Experimental and computational investigations of heat and mass transfer of intensifier grids
  14. Implementation of CFD module in the KORSAR thermal-hydraulic system code
  15. Numerical and experimental investigation of 3D coolant temperature distribution in the hot legs of primary circuit of reactor plant with WWER-1000
  16. Analyses of Beyond Design Basis Accident Homogeneous Boron Dilution Scenarios
  17. Analysis of heterogeneous boron dilution transients during outages with APROS 3D nodal core model
  18. Prospects of subcritical molten salt reactor for minor actinides incineration in closed fuel cycle
  19. Usage of burnt fuel isotopic compositions from engineering codes in Monte-Carlo code calculations
  20. Neutron-kinetic and thermo-hydraulic uncertainties in the study of Kalinin-3 benchmark
  21. Inter-assembly gap deviations in VVER-1000: Accounting for effects on engineering margin factors
Heruntergeladen am 10.12.2025 von https://www.degruyterbrill.com/document/doi/10.3139/124.110504/html?lang=de
Button zum nach oben scrollen