Home Technology Shamir Secret Sharing Scheme with Dynamic Access Structure (SSSDAS): case study on nuclear power plant
Article
Licensed
Unlicensed Requires Authentication

Shamir Secret Sharing Scheme with Dynamic Access Structure (SSSDAS): case study on nuclear power plant

  • P. Thiyagarajan , Prasanth Kumar Thandra , J. Rajan , S. A. V. Satyamurthy and G. Aghila
Published/Copyright: April 24, 2015
Become an author with De Gruyter Brill

Abstract

In recent years, due to the sophistication offered by the Internet, strategic organizations like nuclear power plants are linked to the outside world communication through the Internet. The entry of outside world communication into strategic organization (nuclear power plant) increases the hacker's attempts to crack its security and to trace any information which is being sent among the top level officials. Information security system in nuclear power plant is very crucial as even small loophole in the security system will lead to a major disaster. Recent cyber attacks in nuclear power plant provoked information security professionals to look deeply into the information security aspects of strategic organizations (nuclear power plant). In these lines, Shamir secret sharing scheme with dynamic access structure (SSSDAS) is proposed in the paper which provides enhanced security by providing dynamic access structure for each node in different hierarchies. The SSSDAS algorithm can be applied to any strategic organizations with hierarchical structures. In this paper the possible scenarios where SSSDAS algorithm can be applied to nuclear power plant is explained as a case study. The proposed SSSDAS scheme identifies the wrong shares, if any, used for reconstruction of the secret. The SSSDAS scheme also address the three major security parameters namely confidentiality, authentication and integrity.

Kurzfassung

Kernkraftwerke sind mit der Außenwelt über Internet verbunden. Dadurch ist die Gefahr gegeben, dass Hacker das Sicherheitssystem knacken und alle sicherheitsrelevanten Informationen nachverfolgen können. Das Informationssicherheitssystem in Kernkraftwerken ist von großer Bedeutung, da selbst kleinste Sicherheitslücken zu großen Katastrophen führen könnten. Jüngste Cyberattacken auf die Informationssicherheitssysteme von Kernkraftwerken haben dazu geführt, dass Fachleute sich die Informationssicherheitsaspekte dieser Unternehmen näher angesehen haben. In diesem Zusammenhang wird das Shamir Secret-Sharing-Verfahren mit dynamischer Zugangsstruktur (SSSDAS) in diesem Beitrag empfohlen, das eine erhöhte Sicherheit bietet durch eine dynamische Zugangsstruktur für jeden Knotenpunkt in verschiedenen Hierarchieebenen. Der SSSDAS Algorithmus kann auf alle strategischen Organisationen mit hierarchischen Strukturen angewendet werden. In diesem Beitrag werden mögliche Szenarien vorgestellt, bei denen SSSDAS Algorithmen auf die Situation in Kernkraftwerken angewendet werden können. Das vorgeschlagene SSSDAS Schema identifiziert die falschen Teilmengen, die, falls vorhanden, für die Rekonstruktion des Geheimnisses eingesetzt werden. Das SSSDAS Schema befasst sich auch mit den drei Hauptsicherheitsparametern, nämlich Vertraulichkeit, Authentifizierung und Integrität.

References

1 Shamir, A.: How to Share a Secret. Commun. ACM22 (1979) 61261310.1145/359168.359176Search in Google Scholar

2 Blakley, G.: Safeguarding Cryptographic Keys. Presented at the Proceedings of the AFIPS National Computer Conference, pp. 313317, 197910.1109/MARK.1979.8817296Search in Google Scholar

3 Tassa, T.: Hierarchical Threshold Secret Sharing. J. Cryptol. 20 (2007) 237264, 10.1007/s00145-006-0334-8Search in Google Scholar

4 Chang, C.-C.; Lin, C.-H.; Lee, W.; Hwang, P.-C.: Secret Sharing with Access Structures in a Hierarchy. in: AINA2 (2004) 3134Search in Google Scholar

5 Ghodosi, H.; Pieprzyk, J.; Safavi-Naini, R.: Secret sharing in multilevel and compartmented groups, in: Boyd, C.; Dawson, E. (Eds.), Information Security and Privacy, Lecture Notes in Computer Science. SpringerBerlin Heidelberg, pp. 367378, 199810.1007/BFb0053748Search in Google Scholar

6 Farras, O.; Martí-FarréJ.; PadróC.: Ideal multipartite secret sharing schemes, in: Advances in Cryptology-EUROCRYPT 2007. Springer, pp. 448465, 200710.1007/978-3-540-72540-4_26Search in Google Scholar

7 Beimel, A.; LivneN.; PadróC.: Matroids can be far from ideal secret sharing, in: Theory of Cryptography. Springer, pp. 194212, 200810.1007/978-3-540-78524-8_12Search in Google Scholar

8 Hsu, C.-F.; Cheng, Q.; Tang, X.; Zeng, B.: An ideal multi-secret sharing scheme based on MSP. Inf. Sci. 181 (2011) 1403140910.1016/j.ins.2010.11.032Search in Google Scholar

9 Jackson, W.-A.; Martin, K. M.: Perfect Secret Sharing Schemes on Five Participants. Designs Codes and Cryptography9 (1996) 26728610.1007/BF00129769Search in Google Scholar

10 Sun, H.-M.; Shieh, S.-P.: Constructing perfect secret sharing schemes for general and uniform access structures. Journal of Information Science and Engineering15 (1999) 679689Search in Google Scholar

11 Blakley, G. R.; Kabatianski, G. A.: On general perfect secret sharing schemes, in: Advances in Cryptology–CRYPT0’95. Springer, pp. 367371, 199510.1007/3-540-44750-4_29Search in Google Scholar

12 Gharahi, M.; HadianD. M.: Perfect secret sharing schemes for graph access structures on six participants. Journal of Mathematical Cryptology (2013) 143146Search in Google Scholar

13 Carpentieri, M.: A perfect threshold secret sharing scheme to identify cheaters. Designs Codes and Cryptography5 (1995) 18318710.1007/BF01388382Search in Google Scholar

14 Kurihara, J.; Kiyomoto, S., Fukushima, K., Tanaka, T.: A new (k,n)-threshold secret sharing scheme and its extension, in: Information Security. Springer, pp. 455470, 200810.1007/978-3-540-85886-7_31Search in Google Scholar

15 Dehkordi, M. H.; Mashhadi, S.: An efficient threshold verifiable multi-secret sharing. Comput. Stand. Interfaces30 (2008) 18719010.1016/j.csi.2007.08.004Search in Google Scholar

16 Dongping, H.; Duo, L.; Yiqi, D.: Weighted Threshold Secret Sharing. Journal of Computer Research and Development44 (2007) 1378138210.1360/crad20070814Search in Google Scholar

17 Harn, L.; Fuyou, M.: Weighted Secret Sharing Based on the Chinese Remainder Theorem. International Journal of Network Security (2013) 17Search in Google Scholar

18 Yang, Y.; Hou, Z.: Weighted threshold secret sharing scheme based on Mignotte sequence. Appl. Res. Comput. 27 (2010) 15051507Search in Google Scholar

19 Belenkiy, M.: Disjunctive Multi-Level Secret Sharing. Cryptology ePrint Archive, Report 2008/018, http://eprint.iacr.org/2008/018Search in Google Scholar

20 Käsper, E.; Nikov, V.; Nikova, S.: Strongly multiplicative hierarchical threshold secret sharing, in: Information Theoretic Security. Springer, pp. 148168, 200910.1007/978-3-642-10230-1_13Search in Google Scholar

21 Lin, C.; Harn, L.; Ye, D.: Ideal perfect multilevel threshold secret sharing scheme, in: Information Assurance and Security, IAS’09. Fifth International Conference on. IEEE, pp. 118121, 200910.1109/IAS.2009.279Search in Google Scholar

22 Tianqin, W.: A (t, n)-Threshold Group Signature Scheme Based on Compartmented Secret Sharing. in: Web Information Systems and Mining (WISM), International Conference on IEEE, pp. 4548, 2010Search in Google Scholar

23 Yu, Y.; Wang, M.: A probabilistic secret sharing scheme for a compartmented access structure, in: Information and Communications Security. Springer, pp. 136142, 201110.1007/978-3-642-25243-3_11Search in Google Scholar

24 Enos, G.; Zheng, Y.: An ID-Based Signcryption Scheme with Compartmented Secret Sharing for Unsigncryption. IACR Cryptology ePrint Archive (2012) 528, https://eprint.iacr.org/2012/528.pdfSearch in Google Scholar

25 Schoenmakers, B.: A simple publicly verifiable secret sharing scheme and its application to electronic voting, in: Advances in Cryptology–CRYPTO’99. Springer, pp. 148164, 199910.1007/3-540-48405-1_10Search in Google Scholar

26 Park, N.; Song, Y.: Secure RFID application data management using all-or-nothing transform encryption, in: Wireless Algorithms, Systems, and Applications. Springer, pp. 245252, 201010.1007/978-3-642-14654-1_30Search in Google Scholar

27 Thien, C.-C.; Lin, J.-C.: Secret image sharing. Computers and Graphics26 (2002) 76577010.1016/S0097-8493(02)00131-0Search in Google Scholar

28 Harn, L.; Lin, C.: Authenticated group key transfer protocol based on secret sharing, IEEE Transactions on Computers59 (2010) 84284610.1109/TC.2010.40Search in Google Scholar

29 Smith, G.; BoreliR.; Kaafar, M. A.: A layered secret sharing scheme and its application to online social networks. in: NICTA Technical Report, pp. 119, 2013Search in Google Scholar

30 Franklin, M. K.; Reiter, M. K.: Secure auction systems. Google Patents, 2000Search in Google Scholar

31 Stout, J.: The Inevitability of International Cyber Attacks- Are We Ready? [WWW Document]. Aspiration Softw. URL 2010. http://aspirationsoftware.com/2010/04/the-inevitability-of-international-cyber-attacks-are-we-ready/ (accessed on 14th August 2014)Search in Google Scholar

Received: 2014-12-16
Published Online: 2015-04-24
Published in Print: 2015-04-28

© 2015, Carl Hanser Verlag, München

Downloaded on 11.2.2026 from https://www.degruyterbrill.com/document/doi/10.3139/124.110489/html
Scroll to top button