Home Technology Flow impinging effect of critical heat flux and nucleation boiling heat transfer on a downward facing heating surface
Article
Licensed
Unlicensed Requires Authentication

Flow impinging effect of critical heat flux and nucleation boiling heat transfer on a downward facing heating surface

  • Huai-En Hsieh , Mei-Shiue Chen , Jyun-Wei Chen , Wei-Keng Lin and Bau-Shei Pei
Published/Copyright: April 24, 2015
Become an author with De Gruyter Brill

Abstract

Boiling heat transfer has a high heat removal capability in convective cooling. However, the heat removal capability of downward-facing boiling is significantly worse than that of upward-facing cases because of the confined buoyancy effect. This study was inspired by the conception of external reactor vessel cooling (ERVC) condition relevant to the in-vessel retention (IVR) design of Westinghouse AP1000 plant. In the present study, a small-scale test facility had been established to investigate the local phenomena of boiling heat transfer under a downward-facing horizontal heated surface with impinging coolant flow. In this study, the surface temperature, heat flux information and several specific scenes of bubbles are taken down throughout the boiling processes for detailed investigation. It is observed that bubbles are confined under the downward-facing heated surface, which causes a worse heat transfer rate and a lower critical heat flux (CHF) limit than upward-facing boiling. Nevertheless, the impinging coolant flow is found to disturb the thermal boundary layer formed by the heated surface, so the CHF increases with an increase of coolant flow rate. In addition, during nucleate boiling, it is discovered that the growth, combination and dissipation of bubbles induce turbulent wakes and therefore enhance the heat transfer capability.

Kurzfassung

Die Wärmeübertragung beim Sieden hat eine hohe Wärmeabfuhrfähigkeit bei konvektiver Kühlung. Die Wärmeabfuhrfähigkeit bei abwärts gerichtetem Sieden ist jedoch deutlich schlechter als in aufwärtsgerichteten Fällen wegen des eingeengten Auftriebseffekts. Diese Studie wurde angeregt durch externe Kühlungsbedingungen für das Reaktorgefäß (ERVC) relevant für die Ausgestaltung einer Westinghouse AP1000 Anlage. In der vorliegenden Arbeit wurde eine kleine Testeinrichtung errichtet um die lokalen Strömungsphänomene bei der Wärmeübertragung zu untersuchen. Dabei wurde beobachtet, dass die Blasen unter der nach unten gerichteten Wärmeoberfläche eingeengt sind, was eine schlechtere Wärmeübertragungsrate und einen niedrigeren Wärmefluss verursacht als aufwärtsgerichtetes Sieden. Es wurde festgestellt, dass der aufprallende Kühlmittelfluss die von der erwärmten Oberfläche gebildete thermische Grenzschicht stört was zu einer Erhöhung der Strömungsgeschwindigkeit des Kühlmittels führt. Zusätzlich dazu wurde beim Blasensieden beobachtet, dass das Wachstum, die Kombination und die Dissipation der Blasen Randwirbel erzeugt und deshalb die Wärmeabfuhrfähigkeit verstärken kann.


* E-Mail of corresponding author:

References

1 Su, G. H.; Wu, Y. W.; Sugiyama, K.: Natural Convection Heat Transfer of Water in a Horizontal Gap with Downward-Facing Circular Heated Surface. Appl. Thermal Eng. 28 (2008) 140510.1016/j.applthermaleng.2007.09.012Search in Google Scholar

2 Yu, H.; Zhang, Y. P.; Su, G. H.; Qiu, S. Z.; Tian, W. X.: A Theoretical CHF Model for Downward Facing Surfaces and Gaps Under Saturated Boiling. Int. J. Multiphase Flow45 (2012) 3010.1016/j.ijmultiphaseflow.2012.05.001Search in Google Scholar

3 Zhao, D. W.; Su, G. H.; Tian, W.; Sugiyama, X. K.; Qiu, S. Z.: Experimental and Theoretical Study on Transition Boiling Concerning Downward-Facing Horizontal Surface in Confined Space. Nucl. Eng. Des. 238 (2008) 246010.1016/j.nucengdes.2008.02.015Search in Google Scholar

4 YangJ.; Cheung, F. B.; Rempe, J. L.; Suh, K. Y.; Kim, S. B.: Correlations of Nucleate Boiling Heat Transfer and Critical Heat Flux for External Reactor Vessel Coiling. Proc. 2005 ASME Summer Heat Transfer Conference, San Francisco, California, USA, July 17–22, 2005, 2, 99, The American Society of Mechanical Engineers (2005)10.1115/HT2005-72334Search in Google Scholar

5 Cheung, F. B.; Haddad, K. H.: A Hydro-dynamic Critical Heat Flux Model for Saturated Pool Boiling on a Downward Facing Curved Heating Surface. Int. J. Heat Mass Transfer40 (1997) 129110.1016/S0017-9310(96)00208-6Search in Google Scholar

6 Howard, H.; Mudawar, I.: Photographic Study of Pool Boiling CHF from a Downward-Facing Convex Surface. Int. Comm. Heat Mass Transfer35 (2008) 79310.1016/j.icheatmasstransfer.2008.03.003Search in Google Scholar

7 Su, G. H.; Wu, Y. W.; Sugiyama, K.: Subcooled Pool Boiling of Water on a Downward-Facing Stainless Steel Disk in a Gap. Int. J. Multiphase Flow34 (2008) 105810.1016/j.ijmultiphaseflow.2008.07.004Search in Google Scholar

8 Qiu, D.; Dhir, V. K.: Experimental Study of Flow Pattern and Heat Transfer Associated With a Bubble Sliding on Downward Facing Inclined Surfaces. Exp. Therm. Fluid Sci. 26 (2002) 60510.1016/S0894-1777(02)00184-XSearch in Google Scholar

9 Yang, J. F.; Cheung, B.; Rempe, J. L.; Suh, K. Y.; Kim, S. B.: Critical Heat Flux for Downward-Facing Boiling on a Coated Hemispherical Vessel Surrounded by an Insulation Structure. Proc. Int. Congress on Advances in Nuclear Power Plant (ICAPP ’05), Seoul, Korea, May 15–19, 2005, 38, 139 (2006)Search in Google Scholar

10 Dewitt, G.; Mckrell, T.; Buongiorno, J.; Hu, L. W.; Park, R. J.: Experimental Study of Critical Heat Flux with Alumina-Water Nanofluids in Downward-Facing Channels for In-Vessel Retention Applications. Nucl. Eng. Technol. 45 (2013) 33510.5516/NET.02.2012.075Search in Google Scholar

Received: 2015-01-13
Published Online: 2015-04-24
Published in Print: 2015-04-28

© 2015, Carl Hanser Verlag, München

Downloaded on 11.12.2025 from https://www.degruyterbrill.com/document/doi/10.3139/124.110469/html
Scroll to top button