Home Technology Atomistic nano-scale 3D simulations about effects of Cr percentage on the molecular dynamics parameters of Fe-9–12% Cr alloys at fusion reactor temperature conditions
Article
Licensed
Unlicensed Requires Authentication

Atomistic nano-scale 3D simulations about effects of Cr percentage on the molecular dynamics parameters of Fe-9–12% Cr alloys at fusion reactor temperature conditions

  • T. Korkut and S. Sen
Published/Copyright: November 4, 2014
Become an author with De Gruyter Brill

Abstract

9–12% Cr ferritic steel structures at atomic scale were modeled by LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator) Molecular Dynamics package with high accuracy. Embedded-Atom Model (EAM) potential parameters were applied for Fe–Fe, Fe–Cr and Cr–Cr atomic interactions. Nuclear reactor temperature conditions were used in the simulations. Heat flux, kinetic energy, potential energy, total energy, pressures, and atomic displacements of Fe–Cr steels including 9%, 10%, 11%, and 12% Cr were given.

Kurzfassung

Ferritische Stahlstrukturen mit 9–12% Cr wurden im atomaren Bereich mit Hilfe des Programmpakets für Molekulardynamik-Simulationen, LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator), mit hoher Genauigkeit modelliert. Embedded-Atom-Model (EAM) Parameter wurden auf Fe–Fe, Fe–Cr und Cr–Cr atomare Wechselwirkungen angewendet. Bei den Simulationen wurden Kernreaktor-Temperaturbedingungen angenommen. Wärmestromdichte, kinetische Energie, potentielle Eenergie, Gesamt-Energie, Druck und atomare Verschiebungen von Fe–Cr Stählen einschließlich 9%, 10%, 11%, and 12% Cr werden angegeben.

References

1 Oksiuta, Z.; Baluc, N.: Optimization of the chemical composition and manufacturing route for ODS RAF steels for fusion reactor application, Nuclear Fusion49 (2009) 05500310.1088/0029-5515/49/5/055003Search in Google Scholar

2 Dai, L.; Liu, Y. C.; Ma, Z. Q.; Dong, Z. Z.; Yu, L. M.: Microstructural evolution of oxide-dispersion-strengthened Fe-Cr model steels during mechanical milling and subsequent hot pressingJournal of Materials Science48 (2013) 182610.1007/s10853-012-6948-3Search in Google Scholar

3 Malerba, L.; Bonny, G.; Terentyev, D.; Zhurkin, E. E.; Hou, M.; Vortler, K.; Nordlund, K.: Microchemical effects in irradiated Fe-Cr alloys as revealed by atomistic simulationJournal of Nuclear Materials442 (2013) 48610.1016/j.jnucmat.2012.12.038Search in Google Scholar

4 Das, N. K.; Shoji, T.: Early Stage Oxidation Initiation at Different Grain Boundaries of fcc Fe-Cr Binary Alloy: A Computational Chemistry StudyOxidation of Metals79 (2013) 42910.1007/s11085-013-9366-2Search in Google Scholar

5 Yu, G.; Ma, Y.; Cai, J.; Lu, D. G.: Molecular dynamics simulations of displacement cascades in Fe-10%Cr systemsChinese Physics B21(3) (2012) 036101Search in Google Scholar

6 Kumar, N. N.; Durgaprasad, P. V.; Dutta, B. K.; Dey, G. K.: Modeling of radiation hardening in ferritic/martensitic steel using multi-scale approachComputational Materials Science53 (2012) 25810.1016/j.commatsci.2011.08.035Search in Google Scholar

7 Plimpton, S.: Fast Parallel Algorithms for Short-Range Molecular DynamicsJournal of Computational Physics117(1) (1995) 110.1006/jcph.1995.1039Search in Google Scholar

8 Samolyuk, G. D.; Golubov, S. I.; Osetsky, Y. N.; Stoller, R. E.: Molecular dynamics study of influence of vacancy types defects on thermal conductivity of β-SiCJournal of Nuclear Materials418 (2011) 17410.1016/j.jnucmat.2011.06.036Search in Google Scholar

9 Humphrey, W.; Dalke, A.; Schulten, K.: VMD: visual molecular dynamicsJournal of Molecular Graphics14 (1996) 3310.1016/0263-7855(96)00018-5Search in Google Scholar

Received: 2014-04-14
Published Online: 2014-11-04
Published in Print: 2014-11-30

© 2014, Carl Hanser Verlag, München

Downloaded on 11.12.2025 from https://www.degruyterbrill.com/document/doi/10.3139/124.110429/pdf
Scroll to top button