Startseite Technik Flow accelerated corrosion study in feeder pipes
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Flow accelerated corrosion study in feeder pipes

  • P. Goyal , V. Verma und R. K. Singh
Veröffentlicht/Copyright: 4. November 2014
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The Indian Pressurized Heavy Water Reactor (PHWR) core consists of a number of horizontal channels containing nuclear fuel bundles. Parallel coolant channels are connected to Inlet and Outlet header through feeder pipes. Coolant from Reactor Inlet Header is distributed to the coolant channels and after removing heat combines at Reactor Outlet Header. Due to space constraints the feeder pipes are joined to the channel with one or two elbows close to the end fittings of the coolant channels. The carbon steel feeder pipes carry high temperature fluid at higher velocity and are liable to undergo Flow Accelerated Corrosion (FAC). In the recent inspection it has been found that feeders having double elbow are more susceptible to FAC on the intrados of second elbow. But it was found that in some of the elbows maximum thinning due to FAC was observed on the intrados of the first elbow. Hence to resolve this, effect of first bend orientation with respect of upstream direction has been studied. Two different approaches are used for predicting the FAC rate from calculated value of wall shear stress by CFD. One method is based on evaluating of wear rate using Colburn analogy and the other using an empirical equation between wear rate and shear stress. In Colburn analogy, mass transfer coefficient is evaluated by knowing shear stress and equilibrium concentration. For a case study, wall shear stress obtained from k-∊ turbulence model was compared with k-ω SST turbulence model and no appreciable change in the wall shear stress has been found. Hence for subsequent analysis k-∊ turbulence model was chosen because large mesh size near to the surface (first layer thickness) is permitted due to higher y+ value.

Kurzfassung

Der Kern indischer Druckwasserreaktoren (mit schwerem Wasser als Moderator) besteht aus einer Vielzahl horizontaler Kanäle. Das Kühlmittel wird durch parallele Kühlmittelkanäle geführt und in einem Eintrittssammler und einem Austrittssammler zusammengeführt. Diese Zuführungen erfolgen nicht durch gerade Rohre, sondern sind aus Platzgründen in Rohrleitungen mit Krümmern ausgeführt. Dies führt bei hohen Temperaturen und hohen Geschwindigkeiten zum Auftreten von strömungsinduzierter Korrosion. Bei Inspektionen wurde festgestellt, dass bei Leitungen mit zwei Krümmern der Eintrittsbereich in den zweiten Krümmer am anfälligsten ist, aber es wurden auch durch strömungsinduzierte Korrosion stark geschwächte Bereich im Eintrittsbereich des ersten Krümmers gefunden. Um diese Befunde zu untersuchen, wurde der Einfluss der Orientierung des ersten Krümmers mit Hilfe von CFD Berechnungen untersucht. Dazu wurde zum einen die Colburn Analogie und zum anderen eine empirische Korrelation zwischen Abnutzungsrate und Scherspannung herangezogen. Die Ergebnisse werden im Beitrag vorgestellt.

References

1 Bajaj, S. S.; Gore, A. R.: The Indian PHWR. Nuclear Engineering and Design236 (2006) 70172210.1016/j.nucengdes.2005.09.028Suche in Google Scholar

2 Goyal, P.; Rastogi, R.; Verma, V.; Bhasin, V.; Singh, R. K.; Vaze, K. K.; Ghosh, A. K.: A study on prediction of FAC rates. International Conference on Flow Accelerated Corrosion-FAC2008, France, March 2008Suche in Google Scholar

3 Goyal, P.; Verma, V.; Rastogi, R.; Bhasin, V.; Ghosh, A. K.: FAC Study in Feeder Pipes of 220 MWe Indian PHWR. International Conference on Flow Accelerated Corrosion-FAC2010, France, May 2010Suche in Google Scholar

4 SmithC.L.; ShahV.N.; KaoT.; ApostolakisG.: Incorporating Aging Effects into Probabilistic Risk Assessment – A Feasibility Study Utilizing Reliability Physics Models. NUREG/CR-5632, 2001Suche in Google Scholar

5 KastnerW.; RiedleK.: Empirical Model for the Calculation of Material Losses due to Corrosion Erosion. VGB Kraftwerkstechnik66 (1986) 10231029Suche in Google Scholar

6 MenterF.R.: Zonal Two Equation k-w Turbulence Models for Aerodynamic Flows. AIAA Paper #93-2906, 24th Fluid Dynamics Conference, July 199310.2514/6.1993-2906Suche in Google Scholar

7 MenterF.R.: Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications. AIAA Journal32 (1994) 1598160510.2514/3.12149Suche in Google Scholar

8 Uchida, S.: Naitoh, M.; Uehara, Y.; Okada, H.; Koshizuka, S.; Lister, D. H.: Chemistry in surface boundary layers as related to flow accelerated corrosion of carbon steel in high temperature water. ECS Transactions11 (2008) 132610.1149/1.2939074Suche in Google Scholar

9 Keck, R. G.: Predication and Mitigation of Erosive Corrosive in Steam Extraction Piping Systems, Massachusetts Institutes of Technology1987Suche in Google Scholar

10 Heltmann, H. G., Kastner, W.: Erosion-Corrosion in Water-Steam Cycles – Causes and Countermeasures. VGB Kraftwerkstechnik62 (1982)Suche in Google Scholar

11 Henzel, N.; Crosby, D. C.; Eley, S. R.: Erosion/Corrosion in Power Plants Single- and Two-Phase Flow Experience, Prediction, NDE management. 10. International Conference on Structural Mechanics in Reactor Technology (SMIRT); Anaheim, CA (USA); 14–18 August 1989, 109116Suche in Google Scholar

12 Polson, B.: Complexities in Predicting erosion corrosion. Journal of WEAR233–235 (1999) 497504Suche in Google Scholar

13 Lister, D.; et al: Numerical analysis of the flow in CANDU outlet feeders pipes showing flow assisted corrosion. Proceedings of the 51st Canadian Chemical Engineering Conference, Halifax, Nova Scotia, Canada (2001)Suche in Google Scholar

14 Sanchez-Caldera, L.E.: Mechanism of Corrosion-Erosion in Steam Extraction Line of Power Stations. Ph.D. Thesis, Massachusetts Institute of Technology, 1984Suche in Google Scholar

15 Remy, F. N.; Bouchacourt, M.: Flow-assisted corrosion: a method to avoid damage. Nuclear Engineering and Design133 (1992) 233010.1016/0029-5493(92)90084-9Suche in Google Scholar

16 Abdulsalam, M.; Stanley, J. T.: Steady-state model for erosion-corrosion of feed water piping. Corrosion (1992) 48, 587593, doi: /10.5006/1.331597610.5006/1.3315976Suche in Google Scholar

17 Cengal, Y. A.: Heat Transfer – A practical approach. McGraw Hill Higher Education, Second edition, 2002Suche in Google Scholar

18 Rohsenow, W. M.; Choi, H.: Heat, Mass and Momentum Transfer. Prentice Hall, Englewood Cliffs (N. J.), 1961Suche in Google Scholar

19 SweetonF.H.; Baes, C. F.: The solubility of Magnetite and hydrolysis of ferrous ions in aqueous solutions and elevated temperatures. Journal of Chemical thermodynamics2 (1970) 47950010.1016/0021-9614(70)90098-4Suche in Google Scholar

20 Watanabe, Y.; Sue, K.; Abe, H.: Effects of Cr Content and Environmental Factors on FAC Rate of Carbon Steels. Proceedings of 2009 ASME Pressure Vessel and Piping Division Conference, July 26–30 (2009) Prague, Czech Republic, (CD-ROM), PVP2009-78126Suche in Google Scholar

21 Ferziger, J. H.; PericM.: Computational Methods for Fluid Dynamics. 2nd ed., Springer, 199910.1007/978-3-642-98037-4Suche in Google Scholar

22 ESI Group: CFD-ACE+ V2009.2 User manual. ESI CFD Inc.Suche in Google Scholar

23 Tu, J.; Yeoh, G. H.; Liu, C.: Computational Fluid Dynamics-A Practical Approach. Butterworth-Heinemann (2008)Suche in Google Scholar

Received: 2013-11-01
Published Online: 2014-11-04
Published in Print: 2014-11-30

© 2014, Carl Hanser Verlag, München

Heruntergeladen am 11.12.2025 von https://www.degruyterbrill.com/document/doi/10.3139/124.110401/html
Button zum nach oben scrollen