Home CO2 doped γ-irradiated hydroxyapatite for EPR dosimetry
Article
Licensed
Unlicensed Requires Authentication

CO2 doped γ-irradiated hydroxyapatite for EPR dosimetry

  • Farhood Ziaie
Published/Copyright: November 4, 2014
Become an author with De Gruyter Brill

Abstract

Synthetic nano-structure hydroxyapatite samples were doped by carbon in furnace via exposing to CO2 circulating gas in different time of 30, 120, and 360 min under 100°C and 400°C of temperatures. FTIR, TEM and XRD analyses results confirmed the doping of carbonate group to the hydroxyapatite structure. The samples were irradiated in absorbed doses of 2, 5, 10, 20, 50, and 80 kGy using a 60Co γ-ray source and subjected to EPR measurement, subsequently. The EPR signal intensities were constructed as a function of radiation dose, were compared with the results of raw sample and were studied from dosimetric point of view. The obtained results show a considerable increment in EPR signal intensities of the samples which were treated at 400°C. At the doses less than 20 kGy the carbon doped samples show a better EPR respond. This is much better for doses below 5 kGy in comparison to the raw samples and the response is quite linear.

Kurzfassung

Synthetische Nano-Struktur-Proben von Hydroxyapatit wurden mit Kohlenstoff dotiert indem die Probe zirkulierendem CO2 Gas verschieden lange, 30, 120, und 360 min und Temperaturen von 100°C und 400°C ausgesetzt war. FTIR, TEM und XRD Analyseergebnisse bestätigen die Dotierung des Hydroxyapatit mit Kohlenstoff. Die Proben wurden bestrahlt mit Energiedosen von 2, 5, 10, 20, 50 und 80 kGy mit Hilfe einer 60Co Gammaquelle und danach wurden EPR Messungen durchgeführt. Die EPR-Signalintensitäten wurden als Funktion der Strahlendosis dargestellt und mit den Ergebnissen der undotierten Proben verglichen und aus dosimetrischer Sicht untersucht. Die erhaltenen Ergebnisse zeigen einen beträchtlichen Anstieg der EPR-Signalintensitäten der Proben, die bei 400°C behandelt worden waren. Bei Dosen unter 20 kGy zeigen die Kohlenstoff-dotierten Proben ein besseres EPR Ansprechverhalten. Dieses ist viel besser für Dosen unter 5 kGy im Vergleich zu den undotierten Proben und das Ansprechverhalten ist ziemlich linear.

References

1 Stachowicz, W.; Strzelczak-Burlinska, G.; Michalik, J.; Wojtowicz, A.; Dziedzic-Goclawska, A.; Ostrowski, K.: Application of electron paramagnetic resonance (EPR) spectroscopy for control of irradiated food. Journal of the Science of Food and Agriculture58 (1992) 40710.1002/jsfa.2740580316Search in Google Scholar

2 Mahesh, K.: Techniques of Radiation Dosimeter. Wily Eastern Ltd: New Delhi, India, 1985Search in Google Scholar

3 Bögl, K. W.; Regulla, D. F.; Suess, M. J.: Health impact, identification, and dosimetry of irradiated food. Institut für Strahlenhygiene: 1988; Vol. 125Search in Google Scholar

4 Ziaie, F.; Stachowicz, W.; Strzelczak, G.; Al-Osaimi, S.: Using bone powder for dosimetric system EPR response under the action of γ irradiation. Nukleonika44 (1999) 603Search in Google Scholar

5 Lanjanian, H.; Ziaie, F.; Modarresi, M.; Nikzad, M.; Shahvar, A.; Durrani, S.: A technique to measure the absorbed dose in human tooth enamel using EPR method. Radiation Measurements43 (2008) S64810.1016/j.radmeas.2008.04.031Search in Google Scholar

6 Ziaie, F.; Hajiloo, N.; Fathollahi, H.; Mehtieva, S.I.: Bone powder as EPR dosimetry system for electron and gamma radiation. Nukleonika54 (2009) 267Search in Google Scholar

7 Moens, P.; Devolder, P.; Hoogewijs, R.; Callens, F.; Verbeeck, R.: Maximum-likelihood common-factor analysis as a powerful tool in decomposing multicomponent EPR powder spectra. Journal of Magnetic Resonance, Series A101 (1993) 110.1006/jmra.1993.1001Search in Google Scholar

8 Lakes, R. S.: Biomaterials: an introduction. Springer: 2007Search in Google Scholar

9 Driessens, F.: The mineral in bone, dentin and tooth enamel. Bulletin des sociétés chimiques belges89 (1980) 66310.1002/bscb.19800890811Search in Google Scholar

10 Callens, F.; Vanhaelewyn, G.; Matthys, P.; Boesman, E.: EPR of carbonate derived radicals: Applications in dosimetry, dating and detection of irradiated food. Applied magnetic resonance14 (1998) 23510.1007/BF03161892Search in Google Scholar

11 Hajiloo, N.; Ziaie, F.; Mehtieva, S.: Gamma-irradiated EPR response of nano-structure hydroxyapatite synthesised via hydrolysis method. Radiation protection dosimetry148 (2012) 48710.1093/rpd/ncr204Search in Google Scholar PubMed

12 Hajiloo, N.; Ziaie, F.; Mehtieva, S.; Hesaraki, S.: Comparison of the performance of synthesized nano-structure hydroxyapatite with bovine bones and alanine samples for EPR dosimetry. Indian Journal of Science and Technology4 (2011) 60810.17485/ijst/2011/v4i6.4Search in Google Scholar

13 Ziaie, F.; Hajiloo, N.; Alipour, A.; Amraei, R.; Mehtieva, S.: Retrospective dosimetry using synthesized nano-structure hydroxyapatite. Radiation protection dosimetry145 (2011) 37710.1093/rpd/ncq443Search in Google Scholar PubMed

14 Hajiloo, N.; Ziaie, F.; Hesami, M.: Use of hydroxyapatite prepared by sol-gel method for gamma ray and electron beam dosimetry. Journal of Nuclear Science and Technology2 (2011) 15Search in Google Scholar

15 Ziaie, F.; Hajiloo, N.; Amraei, R.: Comparison of Synthesized Micro-and Nanostructure Hydroxyapatite for EPR Dosimetry. BioNanoScience2 (2012) 10410.1007/s12668-012-0042-9Search in Google Scholar

16 Dowlatshah, F.; Ziaie, F.; Hajiloo, N.; Amraie, R.; Fathollahi, H.: Post-annealing effects on EPR response of irradiated nano-structure hydroxyapatite. Radiation Effects and Defects in Solids167 (2012) 93710.1080/10420150.2012.696645Search in Google Scholar

17 Baghalzadeh, B.; Ziaie, F.; Dowlatshah, F.; Larijani, M.: Gamma irradiated EPR response of carbonate ion implanted hydroxyapatite. Nuclear Technology & Radiation Protection28 (2013) 26010.2298/NTRP1303260BSearch in Google Scholar

18 Liao, S.; Watari, F.; Xu, G.; Ngiam, M.; Ramakrishna, S.; Chan, C. K.: Morphological effects of variant carbonates in biomimetic hydroxyapatite. Materials Letters61 (2007) 362410.1016/j.matlet.2006.12.007Search in Google Scholar

19 De Oliveira, L.; Rossi, A.; Lopes, R.: Dose response of A-type carbonated apatites prepared under different conditions. Radiation Physics and Chemistry61 (2001) 48510.1016/S0969-806X(01)00309-7Search in Google Scholar

20 Schramm, D.; Rossi, A.: Electron spin resonance (ESR) studies of COr- 2 radicals in irradiated A and B-type carbonate-containing apatites. Applied Radiation and Isotopes52 (2000) 108510.1016/S0969-8043(00)00046-4Search in Google Scholar

21 Zapanta-LeGeros, R.: Effect of carbonate on the lattice parameters of apatite. 1965.10.1038/206403a0Search in Google Scholar

22 Suchanek, W. L.; Shuk, P.; Byrappa, K.; Riman, R. E.; TenHuisen, K. S.; Janas, V. F.: Mechanochemical-hydrothermal synthesis of carbonated apatite powders at room temperature. Biomaterials23 (2002) 69910.1016/S0142-9612(01)00158-2Search in Google Scholar

23 Pieters, I. Y.; Van den Vreken, N. M.; Declercq, H. A.; Cornelissen, M. J.; Verbeeck, R. M.: Carbonated apatites obtained by the hydrolysis of monetite: Influence of carbonate content on adhesion and proliferation of MC3T3-E1 osteoblastic cells. Acta Biomaterialia6 (2010) 156110.1016/j.actbio.2009.11.002Search in Google Scholar PubMed

Received: 2014-03-20
Published Online: 2014-11-04
Published in Print: 2014-11-30

© 2014, Carl Hanser Verlag, München

Downloaded on 6.10.2025 from https://www.degruyterbrill.com/document/doi/10.3139/124.110426/html
Scroll to top button