Computational models to dertermine fluiddynamical transients due to condensation induced water hammer (CIWH)
-
H. Swidersky
Abstract
Condensation induced water hammer (“condensation hammer”, CIWH) represent a dangerous phenomenon in pipings, which can endanger the pipe integrity. If they cannot be excluded, they have to be taken into account for the integrity proof of components and pipe structures. Up to now, there exists no substantiated model, which sufficiently determines loads due to CIWH. Within the framework of the research alliance CIWA, a tool for estimating the potential and the amount of pressure loads will be developed based on theoretical work and supported by experimental results. This first study discusses used computational models, results of experimental observations and gives an outlook onto future techniques.
Kurzfassung
Kondensationsinduzierte Wasserschläge („Kondensationsschläge“, CIWH) stellen ein gefährliches Phänomen für Rohrleitungssysteme dar welche deren Integrität gefährden kann. Wenn solche Ereignisse nicht ausgeschlossen werden können, müssen sie bei der sicherheitstechnischen Bewertung von Komponenten und Rohrleitungsstrukturen berücksichtigt werden. Bis heute existiert kein Berechnungsmodell das auf abgesicherter Basis abdeckende Belastungen aus CIWH ermittelt. Im Rahmen des Forschungsverbundprojekts CIWA wird ein Werkzeug zur Abschätzung des Potenzials von CIWH und den daraus entstehenden Belastungen auf Basis theoretischer und experimenteller Arbeiten entwickelt. Dieser erste Beitrag behandelt eingesetzte numerische Berechnungsansätze, vergleicht Ergebnisse experimenteller Arbeiten und gibt einen Ausblick auf zukünftige Ansätze.
References
1 Joukowsky, N.: Über den hydraulischen Stoss in Wasserleitungsröhren, (transl.: On the hydraulic hammer in water supply pipes). Mémoires de l'Académie Impériale des Sciences de St.-Pétersbourg, Series 8, 9 (1898) 1–71 (Im Detail lautet die Bezeichnung: Serie 8, Volume 9, Heft 5, Seiten 1–71)Suche in Google Scholar
2 Van Duyne, D. A.; Merilo, M. (Editors): Water Hammer Prevention Mitigation, and Accomodation. Electric Power Research Institute (EPRI), Final Report, NP-6766, Vol. 1–6, Research Project 2856–03 (1992)Suche in Google Scholar
3 Electric Power Research Institute (EPRI): GenericLetter 96–06 Waterhammer Issues Resolution. Final Report, Palo Alto (2002)Suche in Google Scholar
4 Bergant, A.; Simpson, A. R.; Tijsseling, A. S.: Water hammer with column separation; A historical review. Journal of Fluids and Structures22 (2006) 135–17110.1016/j.jfluidstructs.2005.08.008Suche in Google Scholar
5 Strubelj, L.; Ézsöl, Gy.; Tiselj, I.: Direct contact condensation induced transition from stratified to slug flow. Nuclear Engineering and Design240 (2010) 266–27410.1016/j.nucengdes.2008.12.004Suche in Google Scholar
6 CIWA-Project, Web-Page, http://www.tu-harburg.de/ciwa.htmlSuche in Google Scholar
7 Van Duyne, D. A.; Merilo, M. (Editors): Water Hammer Handbook for Nuclear Plant Engineers and Operators. Electric Power Research Institute (EPRI), TR-106438 (1996)Suche in Google Scholar
8 Griffith, P.: Screening Reactor Steam/Water Piping Systems for Water Hammer. NUREG/CR-6519, Massachusetts Institute of Technology (1997)10.2172/527558Suche in Google Scholar
9 Bjorge, R. W.; Griffith, P.: Initiation of water hammer in horizontal and nearly horizontal pipes containing steam and subcooled water. ASME Journal Heat Transfer, 106 (1983) 835–84010.1115/1.3246760Suche in Google Scholar
10 Chun, M.-H.; Yu, S.-O.: A parametric study and guide chart to avoid condensation-induced water hammer in a horizontal pipe. Nuclear Engineering and Design, 201 (2000) 239–25710.1016/S0029-5493(00)00280-6Suche in Google Scholar
11 Sung, C.-K.; Chun, M.-H.: Onset Slugging Criterion Based on Singular Points and Stability Analyses of Transient One-Dimensional Two-Phase Flow Equations of Two-Fluid Model. Journal of the Korean Nuclear Society28 (1996) 299–310Suche in Google Scholar
12 Tiselj, I.; et al.: WAHALoads – Two-Phase Flow Water Hammer Transients and Induced Loads on Materials and structures of Nuclear Power Plants. JSI-Report, IJS-DP-8841, Rev. Mar-04., Ljubljana, (2004)Suche in Google Scholar
13 Neuhaus, T.; Schaffrath, A.: Tripartite Mass Transfer Model: Development, Implementation in DYVRO, Verification and Validation. Kerntechnik, 77, 2 (2012) 115–121Suche in Google Scholar
14 Downar-Zapolski, P.; Bilicki, Z.; Bolle, L.; Franco, J.: The non-equilibrium relaxation model for one-dimensional flashing liquid flow. International Journal of Multiphase Flow22 (1996) 473–48310.1016/0301-9322(95)00078-XSuche in Google Scholar
15 Lemmonier, H.: An attempt to apply the homogeneous relaxation model to the WAHA-loads benchmark tests with interaction with the mechanical structure. CEAT3.3-D61-200302, WAHALoads project deliverable D61 (2002)Suche in Google Scholar
16 Mills, A. F.: Heat Transfer. 2nd Edition, Prentice Hall (1999)Suche in Google Scholar
17 Gale, J.; Tiselj, I.: WAHA (Water Hammer) computer code, The Practical Application of Surge Analysis for Design and Operation. Proceedings of the 9th International Conference on Pressure Surges, Vol. 2, Chester, UK, 24–26 March 2004, 619–632Suche in Google Scholar
18 Barna, I. F.; Imre, A. R.; Baranyai, G.; Ézsöl, Gy.: Experimental and theoretical study of steam condensation induced water hammer phenomena. Nuclear Engineering and Design, 240 (2010) 146–15010.1016/j.nucengdes.2009.09.027Suche in Google Scholar
19 Tannehill, J. C.; Anderson, D. A.; Pletcher, R. H.: Computational Fluid Mechanics and Heat Transfer. 2nd Edition (1997) Taylor & Francis.Suche in Google Scholar
20 Laney, C. B.: Computational Gasdynamics. Cambridge University Press (1998)10.1017/CBO9780511605604Suche in Google Scholar
21 Ferziger, J. H.; Peric, M.: Computational Methods for Fluid Dynamics. 3rd rev. Edition, Springer, Berlin, Heidelberg, New York (2002)10.1007/978-3-642-56026-2Suche in Google Scholar
22 Prasser, H.-M.; Ézsöl, Gy.; Baranyai, G.; Sühnel, T.: Spontaneous water hammers in a steam line in case of cold water ingress. Multiphase Science and Technology, 20 (2008) 265–28910.1615/MultScienTechn.v20.i3-4.30Suche in Google Scholar
23 Lerchl, G.; Augustregesilo, H.: ATHLET User's Manual, ATHLET Mod 2.0, Cycle A. Gesellschaft für Anlagen- und Reaktorsicherheit mbH (GRS) (2003)Suche in Google Scholar
24 Information System Laboratories, RELAP5/MOD3.3 Code Manual. NUREG/CR-5535, Vol. 1 – 8 (2001)Suche in Google Scholar
25 Giot, M. et al.: Two-Phase Flow Water Hammer Transients and Induced Loads on Materials and Structures of Nuclear Power Plants (WAHALoads). Final Report (2004)Suche in Google Scholar
26 ANSYSCFX, http://www.ansys.comSuche in Google Scholar
27 OpenFOAM, http://www.openfoam.comSuche in Google Scholar
28 CGNS, CFD General Notation System, Version 2.5, http://cgns.sourceforge.netSuche in Google Scholar
29 OpenMPI, Message Passing Interface, http://www.open-mpi.orgSuche in Google Scholar
30 Mahaffy, J.: Development of Best Practice Guidelines for CFD in Nuclear Reactor Safety, Nuclear Engineering and Design42 (2010) 377–381Suche in Google Scholar
31 Menter, F. et al.: CFD Best Practice Guidelines for CFD Validation for Reactor Safety Applications. 5th EURATOM Framework Programme, ECORA, Contract No. FIKS-CT-2001–00154, European Commission (2002)Suche in Google Scholar
32 Bestion, D. et al.: Recommendation on Use of CFD Codes for Nuclear Reactor Safety Analysis. 5th EURATOM Framework Programme, ECORA, Contract No. FIKS-CT-2001-00154, European Commission (2004)Suche in Google Scholar
© 2012, Carl Hanser Verlag, München
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Summaries/Kurzfassungen
- Summaries
- Editorial
- Pressure Surges in Nuclear Power Plants – selected contributions for the homonymous mini-symposium of the NURETH-14 in Toronto
- Technical Contributions/Fachbeiträge
- Maintaining competence in nuclear safety and waste management research by BMBF
- Computational models to dertermine fluiddynamical transients due to condensation induced water hammer (CIWH)
- Condensation-induced water hammer in a horizontal pipe
- Slug modeling with 1D two-fluid model
- Delayed equilibrium model and validation experiments for two-phase choked flows relevant to LOCA
- Tripartite mass transfer model: development, implementation in DYVRO, verification and validation
- Condensation induced water hammer – overview and own experiments
- A discussion of hyperbolicity in CATHENA 4: Virtual Mass and phase-to-interface pressure differences
- Pressure surge in Wendelstein 7-X experimental stellarator facility
- Condensation induced water hammer and steam assisted gravity drainage in the Athabasca oil sands
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Summaries/Kurzfassungen
- Summaries
- Editorial
- Pressure Surges in Nuclear Power Plants – selected contributions for the homonymous mini-symposium of the NURETH-14 in Toronto
- Technical Contributions/Fachbeiträge
- Maintaining competence in nuclear safety and waste management research by BMBF
- Computational models to dertermine fluiddynamical transients due to condensation induced water hammer (CIWH)
- Condensation-induced water hammer in a horizontal pipe
- Slug modeling with 1D two-fluid model
- Delayed equilibrium model and validation experiments for two-phase choked flows relevant to LOCA
- Tripartite mass transfer model: development, implementation in DYVRO, verification and validation
- Condensation induced water hammer – overview and own experiments
- A discussion of hyperbolicity in CATHENA 4: Virtual Mass and phase-to-interface pressure differences
- Pressure surge in Wendelstein 7-X experimental stellarator facility
- Condensation induced water hammer and steam assisted gravity drainage in the Athabasca oil sands