Home Tripartite mass transfer model: development, implementation in DYVRO, verification and validation
Article
Licensed
Unlicensed Requires Authentication

Tripartite mass transfer model: development, implementation in DYVRO, verification and validation

  • T. Neuhaus and A. Schaffrath
Published/Copyright: April 19, 2013
Become an author with De Gruyter Brill

Abstract

For the realistic simulation of condensation induced water hammer (CIWH) in horizontal pipes resulting from the contact of steam at sub-cooled water, an appropriate model for the mass and energy transfer due to phase change is needed. For this purpose the tripartite mass transfer (TMT) model has been developed that is introduced in the present paper. The TMT model is based on the assumption of isentropic processes and accounts for vaporization due to flashing, condensation due to isentropic decompression (homogenous condensation) and direct contact condensation at the phase interface. The TMT model shall be considered as a frame for sub-models which may be arranged for the three above-mentioned phase change phenomena. The TMT model has been implemented in the one-dimensional two-phase pressure surge code DYVRO mod 3. A verification and validation procedure was performed based on experiments at test facilities in Oberhausen (PPP), Rossendorf (CWHTF) and Budapest (PMK-2).

Kurzfassung

Zur realitätsnahen Simulation von Kondensationsschlägen in horizontalen Rohren infolge des Kontaktes von Dampf an unterkühltem Wasser ist es u.a. notwendig, die Massen- und Energietransferphänomene zwischen den Phasen hinreichend genau zu modellieren. Zu diesem Zweck wurde das TMT-Modell entwickelt, das in dem vorliegenden Beitrag vorgestellt wird. Es stellt ein übergeordnetes Rahmenmodell dar, das in Abhängigkeit der auftretenden Phasentransfer-Phänomene unterschiedliche spezialisierte Untermodelle aufruft, wobei immer von einer isentropen Zustandsänderung ausgegangen wird. Es unterscheidet zwischen Direktkondensation, homogener Kondensation und der Entspannungsverdampfung. Das TMT-Modell wurde in den eindimensionalen Zweiphasen-Code DYVRO mod. 3 implementiert und Verifizierungs- und Validierungsrechnungen gegen Experimente an Versuchsanlagen in Oberhausen (PPP), Rossendorf (CWHTF) und Budapest (PMK-2) vorgenommen.

References

1 Electric Power Research Institute: Water hammer handbook for nuclear plant engineers and operators, EPRI TR-106438, 1996Search in Google Scholar

2 Giot, G.; Prasser, H.-M.; Dudlik, A.; Ézsöl, G.; Jeschke, J.; Lemonnier, H.; Tiselj, I.; Castrillo, F.; Van Hove, W.; Perezagua, R.; Potapov, S.: Two-phase flow water hammer transients and induced loads on materials and structures of nuclear power plants (WAHALOADS). FISA-2003 EU Research in Reactor Safety, Luxembourg, November 2003Search in Google Scholar

3 Gale, J.; Tiselj, I.: WAHA (Water Hammer) computer code. The Practical Application of Surge Analysis for Design and Operation, 9th International Conference on Pressure Surges, Chester, UK, 24–26 March 2004, Vol. 2, pp. 619632Search in Google Scholar

4 Barna, I. F.; Imre, A. R.; Baranyai, G.; Ézsöl, G.: Experimental and theoretical study of steam condensation induced water hammer phenomena. Nuclear Engineering and Design240 (2010) 14615010.1016/j.nucengdes.2009.09.027Search in Google Scholar

5 Neuhaus, T.; Schaffrath, A.; Jerinić, D.: The pressure surge computer code DYVRO mod. 3: modelling and validation. The 13th International Topical Meeting on Nuclear Reactor Thermal-Hydraulics (NURETH-13), Kanazawa, Japan, September 27 – October 2, 2009Search in Google Scholar

6 Altstadt, A.; Carl, H.; Weiss, R.: Fluid-structure interaction experiments at the water-hammer test facility of Forschungszentrum Rossendorf. Jahrestagung Kerntechnik, Stuttgart, Germany, 1416 May 2002, pp. 559564Search in Google Scholar

7 Dudlik, A.; Schoenfeld, S. B. H.; Hagemann, O.; Carl, H.; Prasser, H.-M.: Water hammer and condensation hammer scenarios in power plants using new measurement system. The Practical Application of Surge Analysis for Design and Operation, 9th International Conference on Pressure Surges, Chester, UK, 24–26 March 2004, Vol. 1, pp. 151165Search in Google Scholar

8 Prasser, H.-M.; Ézsöl, G.; Baranyai, G.; Sühnel, T.: Spontaneous water hammers in a steam line in case of cold water ingress. Multiphase Science and Technology20 (2008) 26528910.1615/MultScienTechn.v20.i3-4.30Search in Google Scholar

9 Neuhaus, T.; Dudlik, A.: Experiments and comparing calculations on thermohydraulic pressure surges in pipes. The 11th International Topical Meeting on Nuclear Reactor Thermal-Hydraulics (NURETH-11), Log Number: 540, Popes Palace Conference Center, Avignon, France, October 2–6, 2005Search in Google Scholar

Received: 2011-12-07
Published Online: 2013-04-19
Published in Print: 2012-05-01

© 2012, Carl Hanser Verlag, München

Downloaded on 4.11.2025 from https://www.degruyterbrill.com/document/doi/10.3139/124.110240/html
Scroll to top button