A complementary Doppler Broadening formalism and its impact on nuclear reactor simulation
-
R. Dagan
, B. Becker und Y. Danon
Abstract
The Boltzmann Transport equation is the governing formalism upon which simulations of nuclear reactors are performed, in particular when strong absorption or anisotropic scattering are significant. On the left (loss) hand side of the balance equation one finds the absorption and the scattering cross section Σa(E′), Σs(E′) respectively. Those cross sections are energy and temperature dependent i.e. Doppler Broadened. The scattering cross section appears explicitly again on the right (production) hand side of the equation in its differential form ∫∫0∞Σ(E → E′); Ω → Ω′)dE dΩ. However, this term is commonly evaluated at 0 K and it does not account for the existing resonances which are the underlying characteristic for Doppler Broadening. Evidently one gets an inherent inconsistency between the integral and differential scattering cross section within the transport solver codes. In this study this missing Doppler Broadened formalism for the differential scattering cross section is introduced in its stochastic and deterministic form. The impact on core criticality is shown to be up to 600 pcm and the change in the nuclides' inventory significant, in particular the 239PU content can be changed by several percents.
Kurzfassung
Die grundlegende Gleichung der Neutronenphysik ist die Boltzmann-Transportgleichung. Falls in einer Kernreaktorsimulation starke Absorption oder anisotrope Streuung beschrieben werden soll, wird auf eine Näherung dieser Gleichung zurückgegriffen. Der Absoptions- und der Streuwirkungsquerschnitt treten implizit auf der linken Seite der Gleichung als integrale Verlustterme auf. Sie sind energie- und temperaturabhängig, d.h. Doppler verbreitert. Der Streuwirkungsquerschnitt tritt explizit in seiner differenziellen Form auf der rechten Seite der Boltzmanngleichung als Produktionsterm auf. Hier jedoch findet die Dopplerverbreiterung in der Regel nicht statt, d.h. die Temperaturabhängigkeit sowie die Existenz der Resonanzen bleiben unberücksichtigt. In dieser Studie wird der Doppler verbreiterte Streukern vorgestellt, sowie nach seiner Implementierung in einem stochastischen Transportcode dessen Einfluss auf Kenngrößen der Reaktorphysik diskutiert. Es wird gezeigt, dass sich dieses Verfahren mit bis zu 600 pcm in der Kritikalität im Vergleich zum Standardverfahren auswirkt. Darüber hinaus ändert sich das Nuklidinventar deutlich, insbesondere die erbrütete Menge 239Pu.
References
1 BellG.; GlasstoneS.: Nuclear Reactor Theory. Van Nostrand Publishing Company1970 chapter 8Suche in Google Scholar
2 EmendoerferD.; HoeckerK.H.: Theorie der Kernreaktoren. B.I. Wissenschaftsverlag1982 Band 1Suche in Google Scholar
3 CullenD.E.; WeisbinC.R.: Exact Doppler Broadening of Tabulated Cross sections. Nuclear Science and Engineering60 (1976) 199–229Suche in Google Scholar
4 RothensteinW.; DaganR.: Ideal Gas Scattering Kernel for Energy Dependent Cross-Sections. Annals of Nuclear Energy25 (1998) 20910.1016/S0306-4549(97)00063-7Suche in Google Scholar
5 Macfarlane, R. E.; Muir, D. W.: The NJOY Nuclear Data Processing System 441 Version 91. LA-12740-M (1994)10.2172/10115999Suche in Google Scholar
6 RothensteinW.: Proof of the formula for the ideal gas scattering kernel for nuclides with strongly energy dependent scattering cross sections. Ann. Nucl. Energy31 (2004) 9–2310.1016/S0306-4549(03)00216-0Suche in Google Scholar
7 DaganR.: On the use of tables for nuclides with well pronounced resonances. Ann. Nucl. Energy32 (2005) 367–37710.1016/j.anucene.2004.11.003Suche in Google Scholar
8 Becker.B.; Dagan.R.; LohnertG.: Proof and implementation of the stochastic formula for ideal gas, energy dependent scattering kernel. Ann. Nucl. Energy36 (2009) 470–47410.1016/j.anucene.2008.12.001Suche in Google Scholar
9 X-5 Monte Carlo Team: MCNP-A General Monte Carlo N- Particle Transport Code, Version 5. LA-UR-03-1987 (2003)Suche in Google Scholar
10 Rowlands, J.: LWR Pin Cell Benchmark Intercomparisons. JEFF report 15, September 1999, NEA – OECDSuche in Google Scholar
11 Hesse, U.; Zwermann, W; et al.: Specification of a PWR Subassembly UO2 for comparative calculation. Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) mbH, July 2004Suche in Google Scholar
12 DanonY.; LiuE.; BarryD.; RoT.; DaganR.: Benchmark Experiment of Neutron Resonance Scattering Models in Monte Carlo Codes. International Conference on Mathematics, Computational Methods & Reactor Physics M & C (2009)Suche in Google Scholar
13 Moxon, M.; Ware, T.; Dean, C.: A Least square Fitting Program for Resonances Analysis of Neutron Transmission, Capture, Fission, and Scattering Data. REFIT-2007, UKNSF-P216 (2007)Suche in Google Scholar
14 Larson, N.: SAMMY: Multilevel R-Matrix fits to neutron Data using Bayes' equations. ORNL/TM-9179/R7, ENDF-364/R1, 2006Suche in Google Scholar
15 Dagan, R.; Guber, K.; Gunsing, F.; Kopecky, S.; Moxon, M.; Schilebeeck, P.; Becker, B.; Danon, Y.; Arbanas, G.; Dunn, M.; Larson, N.; Leal, L.: Status of the multiple scattering treatment in REFIT, SAMMY and CONRAD in view of the JRC-IRMM March 2010 meeting. NEA/JEFF-DOC 1329, 2010Suche in Google Scholar
© 2011, Carl Hanser Verlag, München
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Summaries/Kurzfassungen
- Summaries
- Editorial
- Plant behaviour and coupling with reactor physics
- Technical Contributions/Fachbeiträge
- Multi-scale coupled code systems: from coarse-mesh to high-fidelity LWR core calculations
- Development of multi-physics code systems based on the reactor dynamics code DYN3D
- Development of the coupled 3D neutron kinetics/thermal-hydraulics code DYN3D-HTR for the simulation of transients in block-type HTGR
- Influence of nuclear data uncertainties on reactor core calculations
- Analysis of reactor lattice and core parameters in view of nuclear data modifications
- A complementary Doppler Broadening formalism and its impact on nuclear reactor simulation
- Experiences with the coupled code system S3R/RELAP5-3D in training simulators
- BWR transient analysis with the coupled code system S3K/RELAP5
- The development and assessment of TRACE model for Lungmen ABWR
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Summaries/Kurzfassungen
- Summaries
- Editorial
- Plant behaviour and coupling with reactor physics
- Technical Contributions/Fachbeiträge
- Multi-scale coupled code systems: from coarse-mesh to high-fidelity LWR core calculations
- Development of multi-physics code systems based on the reactor dynamics code DYN3D
- Development of the coupled 3D neutron kinetics/thermal-hydraulics code DYN3D-HTR for the simulation of transients in block-type HTGR
- Influence of nuclear data uncertainties on reactor core calculations
- Analysis of reactor lattice and core parameters in view of nuclear data modifications
- A complementary Doppler Broadening formalism and its impact on nuclear reactor simulation
- Experiences with the coupled code system S3R/RELAP5-3D in training simulators
- BWR transient analysis with the coupled code system S3K/RELAP5
- The development and assessment of TRACE model for Lungmen ABWR