Home Technology Influence of nuclear data uncertainties on reactor core calculations
Article
Licensed
Unlicensed Requires Authentication

Influence of nuclear data uncertainties on reactor core calculations

  • M. Klein , L. Gallner , B. Krzykacz-Hausmann , A. Pautz and W. Zwermann
Published/Copyright: April 19, 2013
Become an author with De Gruyter Brill

Abstract

To investigate the influence of nuclear data uncertainties on reactor core calculations systematically, the sampling based uncertainty and sensitivity software package SUSA developed at GRS was extended for the use with nuclear covariance data. Varied nuclear data are generated randomly corresponding to the uncertainty information from the covariance matrices. After performing a large number of calculations with these data, the results are statistically evaluated; this can be done not only for integral, but also for local output quantities like the assembly power distribution. The method is applied to multi-group Monte Carlo calculations stationary states of the PWR MOX/UO2 core transient benchmark, and to corresponding nodal diffusion calculations. Unexpectedly large uncertainties result for the radial power distribution. The uncertainties in the nodal results agree very well with those in the Monte Carlo reference results; thus, it is possible to apply the random sampling method to determine the influence of nuclear data uncertainties on transient core calculations.

Kurzfassung

Um den Einfluss von Unsicherheiten in den nuklearen Daten auf Reaktorberechnungen systematisch zu untersuchen, wurde das in der GRS entwickelte Sampling-basierte Programm SUSA zur Anwendung mit nuklearen Kovarianzdaten erweitert. Aus diesen werden variierte nukleare Daten zufällig erzeugt. Nach der Durchführung einer großen Anzahl von Berechnungen mit diesen nuklearen Daten werden die Ergebnisse statistisch ausgewertet; dies ist nicht nur für integrale, sondern auch für lokale Ergebnisgrößen möglich. Die Methode wird mit Monte-Carlo-Rechnungen für den stationären Zustand des DWR-MOX/UO2-Kerntransienten-Benchmarks sowie entsprechende nodale Diffusionsrechnungen angewandt. Für die radiale Leistungsverteilung ergeben sich unerwartet große Unsicherheiten. Die Unsicherheiten in den nodalen Ergebnissen stimmen sehr gut mit denen in den Monte-Carlo-Referenzlösungen überein; damit wird es möglich, die Sampling-Methode auch zur Bestimmung des Einflusses nuklearer Datenunsicherheiten auf Transientenberechnungen zu bestimmen.

References

1 Koning, A.; Forrest, R.; Kellett, M.; Mills, R.; Henriksson, H.; Rugama, Y.: The JEFF-3.1 Nuclear Data Library, JEFF Report 21, NEA No. 6190, available on the web as http://www.nea.fr/html/dbdata/nds_jefreports/jeffreport-21/jeff21.pdf (2006)Search in Google Scholar

2 Chadwick, M. B. et al.: ENDF/B-VII.0: Next Generation Evaluated Nuclear Data Library for Nuclear Science and Technology. Nuclear Data Sheets107 (2006) 2931311810.1016/j.nds.2006.11.001Search in Google Scholar

3 Iwamoto, O.; Nakagawa, T.; Otuka, N.; Chiba, S.; Okumura, K.; Chiba, G.: JENDL Actinoid File 2008 and Plan of Covariance Evaluation. Nuclear Data Sheets109 (2008) 2885288910.1016/j.nds.2008.11.028Search in Google Scholar

4 SCALE: A Modular Code System for Performing Standardized Computer Analyses for Licensing Evaluation, Version 6, ORNL/TM-2005/39 (2009)Search in Google Scholar

5 Rearden, B. T.: TSUNAMI Sensitivity and Uncertainty Analysis Capabilities in SCALE 5.1. Trans. Am. Nucl. Soc.97 (2007) 604605Search in Google Scholar

6 Koning, A. J.; Rochman, D.: Towards sustainable nuclear energy: Putting nuclear physics to work. Annals of Nucl. Energy35 (2008)10.1016/j.anucene.2008.06.004Search in Google Scholar

7 Langenbuch, S.; Velkov, K.: Overview on the Development and Application of the Coupled Code System ATHLET – QUABBOX/CUBBOX. Mathematics and Computation, Supercomputing, Reactor Physics and Nuclear and Biological Applications, Avignon, France, (2005)Search in Google Scholar

8 Krzykacz, B.; Hofer, E.; Kloos, M.: A Software System for Probabilistic Uncertainty and Sensitivity Analysis of Results from Computer Models. Proc. Int. Conf. on Probabilistic Safety Assessment and Management (PSAM-II), San Diego, Ca., USA, March 20–25, 1994Search in Google Scholar

9 Kozlowski, T.; Downar, T. J.: PWR MOX/UO2 Core Transient Benchmark – Final Report. NEA/NSC/DOC(2006)20, (2007)Search in Google Scholar

10 Zwermann, W.; Krzykacz-Hausmann, B.; Gallner, L.; Pautz, A.: Uncertainty Analyses with Nuclear Covariance Data in Reactor Core Calculations. Proc. German Annual Meeting on Nuclear Technology, Berlin, Germany, May 4–6, 2010Search in Google Scholar

11 Ivanov, K.; Avramova, M.; Kodeli, I.; SatoriE.: Benchmark for Uncertainty Analysis in Modeling (UAM) for Design, Operation, and Safety Analysis of LWRs. NEA/NSC/DOC(2007)23, (2007)Search in Google Scholar

Received: 2010-10-08
Published Online: 2013-04-19
Published in Print: 2011-07-01

© 2011, Carl Hanser Verlag, München

Downloaded on 11.12.2025 from https://www.degruyterbrill.com/document/doi/10.3139/124.110148/html
Scroll to top button