Development of multi-physics code systems based on the reactor dynamics code DYN3D
-
S. Kliem
, A. Gommlich , A. Grahn , U. Rohde , J. Schütze , T. Frank , A. Gomez and V. Sanchez
Abstract
The reactor dynamics code DYN3D has been coupled with the CFD code ANSYS CFX and the 3D thermal hydraulic core model FLICA4. In the coupling with ANSYS CFX, DYN3D calculates the neutron kinetics and the fuel behavior including the heat transfer to the coolant. The physical data interface between the codes is the volumetric heat release rate into the coolant. In the coupling with FLICA4 only the neutron kinetics module of DYN3D is used. Fluid dynamics and related transport phenomena in the reactor's coolant and fuel behavior is calculated by FLICA4.
The correctness of the coupling of DYN3D with both thermal hydraulic codes was verified by the calculation of different test problems. These test problems were set-up in such a way that comparison with the DYN3D stand-alone code was possible. This included steady-state and transient calculations of a mini-core consisting of nine real-size PWR fuel assemblies with ANSYS CFX/DYN3D as well as mini-core and a full core steady-state calculation using FLICA4/DYN3D.
Kurzfassung
Das Reaktordynamikprogramm DYN3D wurde mit dem CFD Code ANSYS CFX und dem 3D thermohydraulischen Kernmodell FLICA4 gekoppelt. In der Kopplung mit ANSYS CFX berechnet DYN3D die Neutronenkinetik und das Brennstabverhalten einschließlich der Wärmeübertragung an das Kühlmittel. Die physikalische Schnittstelle zwischen den Codes ist die volumetrische Wärmequelle im Kühlmittel. In der Kopplung mit FLICA4 wird nur das Neutronenkinetikmodul von DYN3D verwendet. Die vollständige Fluidmechanik des Kühlmittels und das Brennstabverhalten werden in FLICA4 berechnet.
Die korrekte Umsetzung der Kopplung mit beiden thermohydraulischen Codes wurde durch die Berechnung verschiedener Testprobleme verifiziert. Diese Testprobleme wurden so ausgewählt, dass ein Vergleich mit der stand-alone Version von DYN3D möglich war. Das beinhaltete stationäre und transiente Rechnungen mit ANSYS CFX/DYN3D für einen Minikern aus neun DWR Brennelementen sowie stationäre Rechnungen für einen Minikern und einen Vollkern mit FLICA4/DYN3D.
References
1 Grundmann, U.; Rohde, U.; Mittag, S.: DYN3D – Three Dimensional Core Model for Steady-State and Transient Analysis of Thermal Reactors. Proc. PHYSOR2000, Pittsburgh, CD-ROMSearch in Google Scholar
2 Beckert, C.; Grundmann, U.: Development and verification of a nodal approach for solving the multigroup SP3 equations. Annals of Nuclear Energy35/1 (2008) 7510.1016/j.anucene.2007.05.014Search in Google Scholar
3 Duerigen, S.; Grundmann, U.; Mittag, S.: A nodal approach to the solution of the multi-group SP3 equations in trigonal geometry. Proc. Annual Meeting on Nuclear Technology ‘10, paper 107, INFORUM GmbH, Berlin (2010)Search in Google Scholar
4 ANSYS Inc., ANSYS 12.0 User's Guide, Canonsburg, PA, USA, (2009)Search in Google Scholar
5 Chauliac, C.: Overview on the Collaborative Project NURISP. Presentation at the NURESIM General Seminar, Madrid, Nov. 27–28, 2008Search in Google Scholar
6 http://www.salome-platform.org/Search in Google Scholar
7 Toumi, I.; Bergeron, A.; Gallo, D.; Royer, E.; Caruge, D.: FLICA-4: A 3D two-phase flow computer code with advanced numerical methods for nuclear applications. Nucl. Eng. Design200 (2000) 139–15510.1016/S0029-5493(99)00332-5Search in Google Scholar
8 Kozmenkov, Y.; Kliem, S.; Grundmann, U.; Rohde, U.; Weiss, F.-P.: Calculation of the VVER-1000 coolant transient benchmark using the coupled code systems DYN3D/RELAP5 and DYN3D/ATHLET. Nucl. Eng. Design237 (2007) 1938–195110.1016/j.nucengdes.2007.02.021Search in Google Scholar
9 Kliem, S.; Kozmenkov, Y.; Hoehne, T.; RohdeU.: Analyses of the V1000CT-1 benchmark with the DYN3D/ATHLET and DYN3D/RELAP coupled code systems including a coolant mixing model validated against CFD calculations. Progress in Nucl. Energy48 (2006) 830–84810.1016/j.pnucene.2006.06.008Search in Google Scholar
10 MittagS.; Kliem, S.; Weis, F.-P.; Kyrki-Rajamäki, R.; Hämäläinen, A.; Langenbuch, S.; Danilin, S.; Hadek, J.; Hegyi, G.; Kuchin, A.; Panayotov, D.: Validation of coupled neutron kinetic / thermal-hydraulic codes Part 1: Analysis of a VVER-1000 transient (Balakovo-4), Annals of Nuclear Energy, 28/9 (2001), pp. 857–87310.1016/S0306-4549(00)00095-5Search in Google Scholar
11 Grundmann, U.; Kliem, S.: Analyses of the OECD main steam line break benchmark with the DYN3D and ATHLET codes. Nuc. Techn.142 (2003) 146–153.Search in Google Scholar
12 Kliem, S.; Rohde, U.; Weiss, F.-P.: Core response of a PWR to a slug of under-borated water. Nucl. Eng. Design230 (2004) 121–13210.1016/j.nucengdes.2003.11.021Search in Google Scholar
13 Rohde, U.; Hoehne, T.; Kliem, S.; Hemström, B.; Scheuerer, M.; Toppila, T.; Aszodi, A.; Boros, I.; Farkas, I.; Muhlbaur, P.; Vyskocil, V.; Klepac, J.; Remis, J.; Dury, T.: Fluid mixing and flow distribution in the reactor circuit – Computational fluid dynamics code validation. Nucl. Eng. Design237 (2007) 1639–165510.1016/j.nucengdes.2007.03.015Search in Google Scholar
14 Zerkak, O.; et al.: LWR Multiphysics developments and applications within the framework of the NURESIM European project. Proc. M & C + SNA 2007, CD-ROM, 15.-19.04.2007, Monterey, USASearch in Google Scholar
15 Frank, Th.; Lifante, C.; Waata, C.L.; Schuetze, J.: Final Report in the German GRS-BMWi Project No. 150–1328 “Development of CFD Software for Simulation of Multidimensional Flows in Reactor Cooling Systems”. ANSYS Germany GmbH, Otterfing, Germany, ANSYS Technical Report ANSYS/TR-09-02, (2010)Search in Google Scholar
© 2011, Carl Hanser Verlag, München
Articles in the same Issue
- Contents/Inhalt
- Contents
- Summaries/Kurzfassungen
- Summaries
- Editorial
- Plant behaviour and coupling with reactor physics
- Technical Contributions/Fachbeiträge
- Multi-scale coupled code systems: from coarse-mesh to high-fidelity LWR core calculations
- Development of multi-physics code systems based on the reactor dynamics code DYN3D
- Development of the coupled 3D neutron kinetics/thermal-hydraulics code DYN3D-HTR for the simulation of transients in block-type HTGR
- Influence of nuclear data uncertainties on reactor core calculations
- Analysis of reactor lattice and core parameters in view of nuclear data modifications
- A complementary Doppler Broadening formalism and its impact on nuclear reactor simulation
- Experiences with the coupled code system S3R/RELAP5-3D in training simulators
- BWR transient analysis with the coupled code system S3K/RELAP5
- The development and assessment of TRACE model for Lungmen ABWR
Articles in the same Issue
- Contents/Inhalt
- Contents
- Summaries/Kurzfassungen
- Summaries
- Editorial
- Plant behaviour and coupling with reactor physics
- Technical Contributions/Fachbeiträge
- Multi-scale coupled code systems: from coarse-mesh to high-fidelity LWR core calculations
- Development of multi-physics code systems based on the reactor dynamics code DYN3D
- Development of the coupled 3D neutron kinetics/thermal-hydraulics code DYN3D-HTR for the simulation of transients in block-type HTGR
- Influence of nuclear data uncertainties on reactor core calculations
- Analysis of reactor lattice and core parameters in view of nuclear data modifications
- A complementary Doppler Broadening formalism and its impact on nuclear reactor simulation
- Experiences with the coupled code system S3R/RELAP5-3D in training simulators
- BWR transient analysis with the coupled code system S3K/RELAP5
- The development and assessment of TRACE model for Lungmen ABWR