3D thermal hydraulic simulation of the hot channel of a typical material testing reactor under normal operation conditions
-
S. El-Din El-Morshedy
und A. Salama
Abstract
The hot channel in a typical Material Testing Reactor (MTR) is subjected to 3D simulation. Because of the existence of similarity planes, only a quarter of the hot channel including meat thickness, clad, and coolant channel is considered for CFD analysis using the FLUENT code. For the simulation, steady state normal operation regime at the reactor nominal power is assumed. In order to build confidence in our modeling approach, the results obtained in this work are compared with those obtained from the one-dimensional simulation code, MTRTHA. That is, modified variables were generated in order to match those obtained by MTRTHA and to allow comparisons. Quite good agreement is generally observed, however, the maximum clad surface temperature predicted by the 3D calculations, located at the clad mid-width, is higher than the 1D prediction by about 8°C but still below the onset of subcooled boiling by adequate safety margin. The results show quite interesting 3D patterns in both the flow field and the heat transfer. Temperature profiles, velocity profiles and contours are all presented to highlight the essential 3D features of this system.
Kurzfassung
Der Heißkanal in einem typischen Materialprüfungsreaktor (MTR) wurde einer 3D Simulation unterzogen. Wegen des Vorhandenseins von ähnlicher Ebenen wird nur ein Viertel des Heißkanals inklusive Brennstoffgehalt, Hülle und Kühlkanal für die CFD Analyse mit Hilfe des FLUENT Code betrachtet. Für die Simulation werden normale Betriebsbedingungen im stationären Zustand bei nominaler Leistung des Reaktors angenommen. Zur Vertrauensbildung in Bezug auf den Modellansatz wurden die Ergebnisse mit denjenigen Ergebnissen verglichen, die mit Hilfe des eindimensionalen Simulationscodes MTRTHA erhalten wurden. Bei dieser Simulation werden veränderte Variablen erzeugt und an die von MTRTHA erhaltenen Werte angepasst um so Vergleiche zu erlauben. Generell wird eine gute Übereinstimmung beobachtet. Die durch die 3D Berechnungen vorhergesagte maximale Hüllentemperatur in der Mitte der Hülle ist um 8°C höher als die durch die 1D Berechnung vorhergesagte Temperatur, aber immer noch vor dem Einsetzen unterkühlten Siedens durch geeignete Sicherheitsspannen. Die Ergebnisse zeigen interessante 3D Muster, sowohl im Strömungsfeld als auch beim Wärmetransfer. Temperaturprofile, Geschwindigkeitsprofile und Konturen werden präsentiert, um die wesentlichen 3D Merkmale dieses Systems hervorzuheben.
References
1 Studer, E.; Beccantini, A.; Gounand, S.; Dabbene, F.; Magnaud, J. P.; Paillere, H.; Limaiem, I.; Damian, F.; Golfier, H.; Bassi, C.; Garnier, J. C.: CAST3M/ARCTURUS: A coupled heat transfer CFD code for thermal-hydraulic analyzes of gas cooled reactors. Nuclear Engineering and Design237 (2007) 1814–1828Suche in Google Scholar
2 Chang, D.; Tavoularis, S.: Numerical simulation of turbulent flow in a 37-rod bundle. Nuclear Engineering and Design237 (2007) 575–590Suche in Google Scholar
3 Wenxi, T.; Su, G. H.; Suizheng, Q.; Dounan, J.: Numerical simulation of turbulent flow and heat transfer in a parallel channel verification of the field synergy principle.NUTHOS-6, Nara, Japan, 2004Suche in Google Scholar
4 El-Din El-Morshedy, S.: Transient Thermal Hydraulic Modeling for Off-Site Power Loss in Nuclear Reactors. PhD Thesis, Cairo University, Giza, Egypt, March 2002Suche in Google Scholar
5 Khater, H.; Abu-El-Maty, T.; El-Din El-Morshedy, S.: Thermal-Hydraulic Modeling of Reactivity Accident in MTR Reactors. Annals of Nuclear Energy34 (2007) 732–742Suche in Google Scholar
6 Chang, D.; Tavoularis, S.: Simulation of turbulence, heat transfer and mixing across narrow gaps between rod-bundle subchannel. Nuclear Engineering and Design238 (2008) 109–123Suche in Google Scholar
7 Rapley, C. W.; Gosman, A. D.: The prediction of fully developed axial turbulent flow in rod bundles. Nuclear Engineering and Design97 (1986) 313–325Suche in Google Scholar
8 Tzanos, C.: Performance of k – ∊ turbulence models in the simulation of LWR fuel-bundle flows. Trans. ANS84 (2001) 197–199Suche in Google Scholar
9 Baglietto, E.; Ninokata, H.: A turbulence model study for simulating flow inside tight lattice rod bundles. Nuclear Engineering and Design235 (2005) 773–784Suche in Google Scholar
10 Toth, S.; Aszodi, A.: CFD analysis of flow field in a triangular rod bundle, Nuclear Engineering and Design (2010) 352–363Suche in Google Scholar
11 Pope, S. B.: Turbulent Flows. Cambridge University Press; 1 edition (2000)10.1017/CBO9780511840531Suche in Google Scholar
12 Menter, F. R.: Two-Equation Eddy-Viscosity Turbulence Model for Engineering Applications. AIAA Journal, 32(8) (1994) 1598–1605Suche in Google Scholar
13 Wilcox, D. C.: Turbulence Modeling for CFD, 1st edition, DCW Industries, Inc., La Canada CA, (1993)Suche in Google Scholar
14 Fluent 6.2.16, user's guideSuche in Google Scholar
15 Kader, B. A.: Temperature and concentration profiles in fully turbulent boundary layers. Int. J. Heat Mass Transfer, 24 (1981) 1541–1544Suche in Google Scholar
16 Dittus, W.; Boelter, L. M. K.: University of California, Berkeley, Publications on Engineering, Vol. 2, p. 443, 1930Suche in Google Scholar
© 2010, Carl Hanser Verlag, München
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Summaries/Kurzfassungen
- Summaries
- Technical Contributions/Fachbeiträge
- Integrated online condition monitoring system for nuclear power plants
- Performance analysis of 233U for fixed bed nuclear reactors
- 3D thermal hydraulic simulation of the hot channel of a typical material testing reactor under normal operation conditions
- Analysis of the processes in the target cooling system of the W7-X fusion experiment
- Nuclear model calculation on charged particle induced reactions to produce 85Sr for diagnostic and endotherapy
- Neutronic and burn-up calculations of heterogeneous Thorium/Uranium fuel in pressurized water reactors
- Research on pitting corrosion of steam generator heat transfer tubes based on acoustic emission
- Application of the Chebyshev polynomial (TN and UN) approximation to reflected slab geometry in the neutron transport equation and computation of critical half thicknesses
- UN approximation to critical slab problem for one-speed neutrons with isotropic, forward and backward scattering
- The albedo problem for pure-quadratic anisotropic scattering with İnönü scattering
- Technical Notes/Technische Mitteilungen
- Targetry of Y2O3 on a copper substrate for the non-carrier-added 89Zr production via 89Y(p, n)89Zr reaction
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Summaries/Kurzfassungen
- Summaries
- Technical Contributions/Fachbeiträge
- Integrated online condition monitoring system for nuclear power plants
- Performance analysis of 233U for fixed bed nuclear reactors
- 3D thermal hydraulic simulation of the hot channel of a typical material testing reactor under normal operation conditions
- Analysis of the processes in the target cooling system of the W7-X fusion experiment
- Nuclear model calculation on charged particle induced reactions to produce 85Sr for diagnostic and endotherapy
- Neutronic and burn-up calculations of heterogeneous Thorium/Uranium fuel in pressurized water reactors
- Research on pitting corrosion of steam generator heat transfer tubes based on acoustic emission
- Application of the Chebyshev polynomial (TN and UN) approximation to reflected slab geometry in the neutron transport equation and computation of critical half thicknesses
- UN approximation to critical slab problem for one-speed neutrons with isotropic, forward and backward scattering
- The albedo problem for pure-quadratic anisotropic scattering with İnönü scattering
- Technical Notes/Technische Mitteilungen
- Targetry of Y2O3 on a copper substrate for the non-carrier-added 89Zr production via 89Y(p, n)89Zr reaction