Startseite Technik Analysis of the processes in the target cooling system of the W7-X fusion experiment
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Analysis of the processes in the target cooling system of the W7-X fusion experiment

  • T. Kaliatka , A. Kaliatka , T. Kačegavičius und D. Naujoks
Veröffentlicht/Copyright: 25. April 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Nuclear fusion has the potential to cover a major part of mankind's energy needs under the conditions of ever-increasing population and energy consumption. Wendelstein 7-X (W7-X) is a fusion experiment currently being built in Greifswald, which shall demonstrate the capability of the stellarator concept on the way to a fusion power plant. This paper presents analyses of processes in the target cooling system with the codes RELAP5 and ASTEC. The loss-of-coolant accident (LOCA) during the “baking” operation mode of W7-X (i.e. under the most critical conditions because of the high temperature and pressure applied) is analysed. The response of the W7-X “baking” and main cooling circuits and the amount of coolant discharged into the plasma vessel are investigated.

Kurzfassung

Die kontrollierte Kernfusion hat das Potential unter der Bedingung eines ständig wachsenden Energiebedarfs der zunehmenden Weltbevölkerung die langfristige Energieversorgung der Menschheit abzusichern. Das Fusionsexperiment Wendelstein 7-X (W7-X), welches zurzeit in Greifswald (Deutschland) aufgebaut wird, soll die Eignung des Stellarator-Konzepts für ein zukünftiges Fusionskraftwerk nachweisen. In dieser Arbeit werden die Prozesse im Wasser-Kühlsystem der Fusionsanlage W7-X mit Hilfe der Simulationsprogramme RELAP5 und ASTEC analysiert. Während der aufgrund der hohen Temperaturen und Drücke kritischen W7-X Betriebsphase ”Ausheizen“ wird ein Kühlmittel Verlust bei einem Leck betrachtet. Die entsprechenden Reaktionen des Wasser-Kühlkreises ”Ausheizen“ und des Haupt-Kühlkreislaufes werden untersucht und die Leckagemenge ermittelt, die dabei in das Plasmagefäß einströmt.


* E-mail:

References

1 Bosch, H.-S.; Dinklage, A.; Klinger, T.; Wolf, R.; the W7-X Team: Contributions to Plasma Physics, (2010), in press, 10.1002/ctpp.201010101Suche in Google Scholar

2 Streibl, B.: Manufacturing of the W7-X divertor and wall protection, Proceedings of 23rd Symposium “Fusion Technology”, Venice, Italy (2004)Suche in Google Scholar

3 Topilski, L.: Consequences of the W7-X in-vessel coolant pipe break at baking conditions, Report 1-NBF-T0015, Max-Planck-Institute for Plasma Physics, Greifswald (2006)Suche in Google Scholar

4 Fletcher, C. D.et al.: RELAP5/MOD3 code manual user's guidelines, Report NUREG/CR-5535, Idaho National Engineering Lab (1992)Suche in Google Scholar

5 Private communication with Boscary, J.; Topilski, L., (2006)Suche in Google Scholar

6 Kaliatka, A.; Uspuras, E.; Vaisnoras, M.: Benchmarking analysis of water hammer effects using RELAP5 code and development of RBMK-1500 reactor main circulation circuit model // Annals of Nuclear Energy. ISSN 0306-4549, Vol. 34, pp. 112 (2007)10.1016/j.anucene.2006.11.010Suche in Google Scholar

7 Van Dorsselaere, J. P.; Schings, B.: ASTEC V1.3 rev0 Users Manuals (modules CESAR, DIVA, ELSA, SOPHAEROS and SYSINT) CD (2006)Suche in Google Scholar

Received: 2010-4-14
Published Online: 2013-04-25
Published in Print: 2010-09-01

© 2010, Carl Hanser Verlag, München

Heruntergeladen am 11.12.2025 von https://www.degruyterbrill.com/document/doi/10.3139/124.110094/html
Button zum nach oben scrollen