Home Prediction of the time-dependent failure rate for normally operating components taking into account the operational history
Article
Licensed
Unlicensed Requires Authentication

Prediction of the time-dependent failure rate for normally operating components taking into account the operational history

  • I. Vrbanić , Z. Šimić and D. Šljivac
Published/Copyright: April 5, 2013
Become an author with De Gruyter Brill

Abstract

The prediction of the time-dependent failure rate has been studied, taking into account the operational history of a component used in applications such as system modeling in a probabilistic safety analysis in order to evaluate the impact of equipment aging and maintenance strategies on the risk measures considered. We have selected a time-dependent model for the failure rate which is based on the Weibull distribution and the principles of proportional age reduction by equipment overhauls. Estimation of the parameters that determine the failure rate is considered, including the definition of the operational history model and likelihood function for the Bayesian analysis of parameters for normally operating repairable components. The operational history is provided as a time axis with defined times of overhauls and failures. An example for demonstration is described with prediction of the future behavior for seven different operational histories.

Kurzfassung

Die Vorhersage Zeit-abhängiger Ausfallquoten wurde untersucht unter Berücksichtigung der betriebsbedingten Vorgeschichte einer Komponente, wie sie auch verwendet wird bei der Systemmodellierung in der probabilistischen Sicherheitsanalyse, um den Einfluss von Alterung und Wartungsstrategien auf die Risikomaßnahmen zu bewerten. Es wurde ein Zeit-abhängiges Modell für die Ausfallquote gewählt auf der Grundlage der Weibull Verteilung und dem Prinzip der proportionalen Altersreduktion durch Instandsetzungsmaßnahmen. Eine Abschätzung der Parameter, die die Ausfallquote bestimmen, wurde durchgeführt, einschließlich der Festlegung des Modells für die betriebsbedingte Vorgeschichte und die Likelyhood-Funktion für die Bayes-Analyse der Parameter für bestimmungsgemäß betriebene, reparierbare Komponenten. Die betriebsbedingte Vorgeschichte wird als Zeitachse angegeben mit festgelegten Zeiten für Reparaturmaßnahmen und Ausfälle. Ein Demonstrationsbeispiel wird beschrieben, mit Vorhersage des zukünftigen Verhaltens bei sieben verschiedenen betriebsbedingten Vorgeschichten.

References

1 Hokstad, P.: The Failure Intensity Process and the Formulation of Reliability and Maintenance Models. Reliability Engineering and System Safety58, Elsevier Science Ltd., p. 69, 199710.1016/S0951-8320(97)00053-7Search in Google Scholar

2 Kumamoto, H.; Henley, E. J.: Probabilistic Risk Assessment and Management for Engineers and Scientists, Second Edition. IEEE, Inc., 1996Search in Google Scholar

3 Levitin, G.; Lisnianski, A.: Optimization of Imperfect Preventive Maintenance for Multi-state Systems. Reliability Engineering and System Safety67, Elsevier Science Ltd., p. 193, 200010.1016/S0951-8320(99)00067-8Search in Google Scholar

4 Marseguerra, M.; Zio, E.: Optimizing Maintenance and Repair Policies via a Combination of Genetic Algorithms and Monte Carlo Simulation. Reliability Engineering and System Safety68, Elsevier Science Ltd., p. 69, 200010.1016/S0951-8320(00)00007-7Search in Google Scholar

5 Modarres, M.; Kaminsky, M.; Krivtsov, V.: Reliability Engineering and Risk Analysis. Marcel Dekker, Inc., 1999Search in Google Scholar

6 Park, D. H.; Jung, G. M.; Yum, J. K.: Cost Minimization for Periodic Maintenance Policy of a System Subject to Slow Degradation: Reliability Engineering and System Safety68, Elsevier Science Ltd., p. 105, 200010.1016/S0951-8320(00)00012-0Search in Google Scholar

7 Pulcini, G.: On the Overhaul Effect for Repairable Mechanical Units: a Bayes Approach. Reliability Engineering and System Safety70, Elsevier Science Ltd., p. 85, 200010.1016/S0951-8320(00)00046-6Search in Google Scholar

8 Pulkkinen, U.; Simola, K.: Bayesian Models and Aging Indicators for Analysing Random Changes in Failure Occurrence. Reliability Engineering and System Safety 68, Elsevier Science Ltd., p. 255, 200010.1016/S0951-8320(00)00020-XSearch in Google Scholar

9 Shin, I.; Lim, T. J.; Lie, C. H.: Estimating Parameters of Intensity Function and Maintenance Effect for Repairable Unit. Reliability Engineering and System Safety54, Elsevier Science Ltd., p. 1, 199610.1016/S0951-8320(96)00097-XSearch in Google Scholar

10 Vrbanić, I.; Šimić, Z.; Bašić, I.: Use of PSA Tools and Techniques in Life Cycle Management of Maintenance and Operation of Complex System. Annual Reliability and Maintainability Symposium 2004 Proceedings, IEEE, Inc., 2004Search in Google Scholar

Received: 2008-4-10
Published Online: 2013-04-05
Published in Print: 2008-09-01

© 2008, Carl Hanser Verlag, München

Downloaded on 22.9.2025 from https://www.degruyterbrill.com/document/doi/10.3139/124.100565/html?lang=en
Scroll to top button