Determination of the RBMK-1500 reactor passport characteristics
-
R. Pabarcius
Abstract
During the whole life of reactor equipment it has to be shown that safety relevant limitations of general reactivity characteristics are not exceeded. Usually, safety margins of these characteristics are listed in a technical certificate (reactor passport). This paper presents the calculation results of the Ignalina nuclear power plant unit 2 reactor passport characteristics obtained by the best estimate 3D computer code QUABOX/CUBBOX, adjusted for the RBMK-1500 reactor core. The characteristics determined are supported by an uncertainty and sensitivity analysis which was performed using the software package SUSA. The uncertainty of the reactivity coefficients and associated effects were quantified in terms of statistical tolerance limits. The sensitivity analysis provided a ranking of the uncertain input parameters with respect to their contribution to the uncertainty of the reactivity characteristics.
Kurzfassung
Während der gesamten Lebensdauer von Reaktorkomponenten muss gezeigt werden, dass sicherheitsrelevante Grenzwerte in Bezug auf das Reaktivitätsverhalten nicht überschritten werden. In der Regel werden die Sicherheitsbereiche solcher Parameter in einer technischen Sicherheitsspezifikation festgelegt. Die vorliegende Arbeit präsentiert die Berechnungsergebnisse für die Sicherheitsspezifikationsparameter des Blockes 2 des Ignalina Kernkraftwerks unter Verwendung des 3D-Programms QUABOX/CUBBOX, angepasst an den RBMK-1500 Reaktorkern. Die Ergebnisse werden durch eine Unsicherheits- und Sensitivitätsanalyse mit Hilfe des Programmpakets SUSA ergänzt. Die Unsicherheit der Reaktivitätskoeffizienten und damit verbundener Effekte wurden in Form von statistischen Toleranzgrenzen quantifiziert. Die Sensitivitätsanalyse liefert eine Gewichtung der unsicheren Eingangsparameter nach ihrem Beitrag zur Unsicherheit bei der Bestimmung des Reaktivitätsverhaltens.
References
1 VD-T-001-0-97 Nuclear Safety Regulations for Reactors of Nuclear Power Plants, VATESI, 1997Suche in Google Scholar
2 Reactor passport No. 2004/2 of Ignalina NPP Unit 2, INPP, 2004Suche in Google Scholar
3 Wickett, A. J., et al.: 1998. Report of the Uncertainty Method Study for Advanced Best Estimate Thermal-hydraulic Code Applications, Vol. 1 – 2 NEA/CSNI/R(97) 35Suche in Google Scholar
4 Langenbuch, S.; Krzykacz-Hausmann, B.; Schmidt, K.-D.; Hegyi, G.; Keresztúri, A.; Kliem, S.; Hadek, J.; Danilin, S.; Nikonov, S.; Kuchin, A.; Khalimanchuk, V.; Hämäläinen, A.: Comprehensive uncertainty and sensitivity analysis for coupled code calculations of VVER plant transients, Nuclear Engineering and Design, Vol. (235), Iss. 2–4, 2005, pp. 521–54010.1016/j.nucengdes.2004.09.003Suche in Google Scholar
5 Kloos, M.; Hofer, E.: SUSA Version 3.5., 2002, User's Guide and TutorialSuche in Google Scholar
6 Kaliatka, A.; Vaisnoras, M.; Vileiniskis, V.: Best estimate analysis of group distribution header blockage events in RBMK-1500 reactors, Kerntechnik, Vol. 70, No. 5–6, 2005, pp. 270–27610.3139/124.100255Suche in Google Scholar
7 Pabarcius, R.; Tonkunas, A.; Bubelis, E.; Clemente, M.: Uncertainty and sensitivity analysis of void and power reactivity coefficients in an RBMK-1500, Kerntechnik70 (3), 2005, pp. 114–11910.3139/124.100232Suche in Google Scholar
8 Tonkunas, A.; Pabarcius, R.; Clemente, M.; ListopadskisN.: Uncertainty and Sensitivity Analysis of the CPS-CC Voiding in the RBMK Reactor Ignalina-2, Kerntechnik71 (3), 2006, pp. 104–11210.3139/124.100282Suche in Google Scholar
9 Safety Analysis Report for INPP Unit 2, INPP, 2002Suche in Google Scholar
10 Final Safety Justification for Ignalina Nuclear Power Plant. Diverse Shutdown System. Data Systems & Solutions, 2004, DS&S Report No. XE405-TEC188-2Suche in Google Scholar
11 Wilks, S. S.: Statistical prediction with special reference to the problem of tolerance limits, Ann. Math. Statist.13, 1942. pp. 400–40910.1214/aoms/1177731537Suche in Google Scholar
12 Hofer, E.: Sensitivity analysis in the context of uncertainty analysis for computationally intensive models. Comput. Phys. Commun.117, 1999, pp. 21–3410.1016/S0010-4655(98)00153-2Suche in Google Scholar
13 Krzykacz, B.; Hofer, E.; Kloos, M.: A software system for probabilistic uncertainty and sensitivity analysis of results from computer models. In: Proc. of PSAM II, 20–25 March 1994, San Diego, CA, USASuche in Google Scholar
14 Bubelis, E.; Pabarcius, R.; Langenbuch, S.; Clemente, M.: Analysis of Nuclear Characteristics of Ignalina-RBMK-1500 Reactors Using New Uranium-Erbium of 2.6 % enrichment. In: Proc. of Annual Meeting on Nuclear Technology 2003, May 18–21, 2003, Berlin, GermanySuche in Google Scholar
15 Safety Analysis Report for Unit 1, INPP, 1996Suche in Google Scholar
16 TSO Support to VATESI during Review and Licensing of the Diverse Shutdown System at Ignalina NPP Unit 2. Report No. TSO-DSS-LEI016, 2004Suche in Google Scholar
17 Bubelis, E.; Pabarcius, R.; Tonkunas, A.: Modelling of CPS cooling circuit voiding, using QUABOX/CUBBOX-HYCA code, Energetika No. 4, 2002, pp. 33–38Suche in Google Scholar
18 Bubelis, E.; Pabarcius, R.; Tonkunas, A.: Modeling of continuous withdrawal and falling out of CPS control rods accident, using QUABOX/CUBBOX-HYCA code, Energetika No. 3, 2003, pp. 11–20Suche in Google Scholar
19 Langenbuch, S.; Maurer, W.; Werner, W.: Coarse mesh flux expansion method for the analysis of space-time effects in large LWR cores. Nucl. Sc. and Eng.63, 1977, pp. 437–45610.13182/NSE77-A27061Suche in Google Scholar
20 Langenbuch, S.; Maurer, W.; Werner, W.: High-Order schemes for neutron kinetics calculation based on a local polynomial approximation. Nucl. Sc. and Eng.64, 1977, pp. 508–51610.13182/NSE77-A27386Suche in Google Scholar
21 Tonkunas, A.: Modeling of the reactor CPS and its cooling circuit during dewatering process, Doctoral Dissertation, LEI, 2006Suche in Google Scholar
22 Pabarcius, R., et al.: Uncertainty and Sensitivity Analysis of QUABOX/CUBBOX Calculation Results for INPP-2 using the GRS Tool SUSA, LEI Report No. S/17-587.4.4-G1, 2004Suche in Google Scholar
23 Measurement Act of reactor physical and dynamical characteristics of Unit 2, INPP, 2005-09-02Suche in Google Scholar
© 2008, Carl Hanser Verlag, München
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Summaries/Kurzfassungen
- Summaries
- Technical Contributions/Fachbeiträge
- Analysis of the hydrogen behaviour in compartments of the Ignalina nuclear power plant
- Determination of the RBMK-1500 reactor passport characteristics
- Technical feasibility of using RU-43 fuel in the CANDU-6 reactors of the Cernavoda NPP
- Computational study of moderator flow and temperature fields in the calandria vessel of a heavy water reactor using the PHOENICS code
- Regulatory requirements on level 2 PSA in Germany and their associated potential to improve emergency management
- Dynamic structure response due to reactor cooling piping system failure
- Uncertainty in activation cross-section calculations at intermediate proton energies
- The LTSN solution of the transport equation for one-dimensional cartesian geometry with c = 1
- Application of the UN approximation to the neutron transport equation in slab geometry
- The reflected critical slab problem for one-speed neutrons with strongly anisotropic scattering
- The analytical representation of the fundamental mode in 1-D-geometry for the CANDLE burn-up phenomenon
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Summaries/Kurzfassungen
- Summaries
- Technical Contributions/Fachbeiträge
- Analysis of the hydrogen behaviour in compartments of the Ignalina nuclear power plant
- Determination of the RBMK-1500 reactor passport characteristics
- Technical feasibility of using RU-43 fuel in the CANDU-6 reactors of the Cernavoda NPP
- Computational study of moderator flow and temperature fields in the calandria vessel of a heavy water reactor using the PHOENICS code
- Regulatory requirements on level 2 PSA in Germany and their associated potential to improve emergency management
- Dynamic structure response due to reactor cooling piping system failure
- Uncertainty in activation cross-section calculations at intermediate proton energies
- The LTSN solution of the transport equation for one-dimensional cartesian geometry with c = 1
- Application of the UN approximation to the neutron transport equation in slab geometry
- The reflected critical slab problem for one-speed neutrons with strongly anisotropic scattering
- The analytical representation of the fundamental mode in 1-D-geometry for the CANDLE burn-up phenomenon