Home Technology The reflected critical slab problem for one-speed neutrons with strongly anisotropic scattering
Article
Licensed
Unlicensed Requires Authentication

The reflected critical slab problem for one-speed neutrons with strongly anisotropic scattering

  • H. Öztürk
Published/Copyright: April 5, 2013
Become an author with De Gruyter Brill

Abstract

The Chebyshev polynomial approximation is used to solve the reflected critical slab problem for one-speed neutrons in a slab with strongly anisotropic scattering. The scattering kernel which is a combination of backward-forward-isotropic scattering and linearly anisotropic scattering is chosen in a uniform finite slab. The critical slab thicknesses are given for different degrees of reflection, backward-forward and linear anisotropy. Calculated numerical results for the critical thickness are in good agreement with the results available in literature.

Kurzfassung

Die Tschebyscheff Polynome werden angewendet zur Lösung des Eingruppen-Transportproblems in kritischen Platten mit Reflektor für Neutronen mit stark anisotroper Streuung. Zur Beschreibung der Neutronenstreuung in einer endlichen homogenen Platte wurde ein Streukern gewählt, der eine Kombination von rückwärts-vorwärts-isotroper Streuung ist. Die Dicken der kritischen Platten werden angegeben für verschiedene Werte der Reflexion, der rückwärts-vorwärts und der linear anisotropen Streuung. Die numerischen Ergebnisse für die kritischen Dicken stimmen gut mit den in der Literatur angegebenen Werten überein.

References

1 Lee, C. E.; Dias, M. P.: Analytical solutions to the moment transport equations-I; one-group one-region slab and sphere criticality. Ann Nucl Energy11 (1984) 515530Search in Google Scholar

2 Aspelund, O.: On a new method for solving the (Boltzmann) equation in neutron transport theory. PICG16 (1958) 530Search in Google Scholar

3 Conkie, W. R.: Polynomial approximations in neutron transport theory. Nucl. Sci. Eng.6 (1959) 260Search in Google Scholar

4 Yabushita, S.: Tschebyscheff polynomials approximation method of the neutron transport equation. J. Math. Phys.2 (1961) 543Search in Google Scholar

5 Yasa, F.; Anli, F.; Güngör, S.: Eigenvalue spectrum with Chebyshev polynomial approximation of the transport equation in slab geometry. J. Quant. Spectrosc. Radiat. Transfer97 (2006) 5110.1016/j.jqsrt.2004.12.017Search in Google Scholar

6 Anli, F.; Yasa, F.; Güngör, S.; Öztürk, H.: TN approximation to neutron transport equation and application to critical slab problem. J. Quant. Spectrosc. Radiat. Transfer101 (2006) 12910.1016/j.jqsrt.2005.11.010Search in Google Scholar

7 Anli, F.; Yasa, F.; Güngör, S.; Öztürk, H.: TN approximation to reflected slab and computation of the critical half thickness. J. Quant. Spectrosc. Radiat. Transfer101 (2006) 13510.1016/j.jqsrt.2005.11.011Search in Google Scholar

8 Öztürk, H.; Anli, F.; Güngör, S.: Application of the UN method to the reflected critical slab problem for one-speed neutrons with forward and backward scattering. Kerntechnik72 (2007) 74Search in Google Scholar

9 Davison, B.: Neutron transport theory. London, Oxford University Press, 195810.1063/1.3062414Search in Google Scholar

10 Sahni, D. C.; Sjöstrand, N. G.; Garis, N. S.: Criticality and time eigenvalues for one-speed neutrons in a slab with forward and backward scattering. J. Phys. D: Appl. Phys.25 (1992) 1381Search in Google Scholar

11 Arfken, G.: Mathematical methods for physicists. London, Academic Press, Inc., 1985Search in Google Scholar

12 Bell, G. I.; Glasstone, S.: Nuclear reactor theory. New York, VNR Company, 1972Search in Google Scholar

13 Atalay, M. A.: The reflected slab and sphere criticality problem with anisotropic scattering in one-speed neutron transport theory. Prog. Nucl. Energy31 (1997) 229Search in Google Scholar

14 Atalay, M. A.: Fourier mode analysis of reflected slab and sphere criticality. Prog. Nucl. Energy44 (2004) 25310.1016/S0149-1970(04)90013-3Search in Google Scholar

Received: 2007-7-9
Published Online: 2013-04-05
Published in Print: 2008-03-01

© 2008, Carl Hanser Verlag, München

Downloaded on 11.12.2025 from https://www.degruyterbrill.com/document/doi/10.3139/124.100532/html
Scroll to top button