Technical feasibility of using RU-43 fuel in the CANDU-6 reactors of the Cernavoda NPP
-
G. Horhoianu
Abstract
Recovered uranium (RU) is a by-product of many light-water reactor (LWR) fuel recycling programs. A fissile content in the RU of 0.9 to 1.0 % makes it impossible for reuse in an LWR without re-enrichment, but CANDU reactors have a sufficiently high neutron economy to use RU as fuel. The Institute for Nuclear Research (INR) Pitesti has analyzed the feasibility of using RU fuel with 0.9 – 1.1 w% 235U in the CANDU-6 reactors of the Cernavoda Nuclear Power Plant (Cernavoda NPP). Using RU fuel would produce a significant increase in the fuel discharge burnup, from 170 MWh/kgU currently achieves with natural-uranium (NU) fuel to about 355 MWh/kgU. This would lead to reduced fuel-cycle cost and a large reduction in spent-fuel volume per full-power-year of operation. The RU fuel bundle design with recovered uranium fuel, known as RU-43, is being developed by the INR Pitesti and is now at the stage of final design verification. Early work has been concentrated on RU-43 fuel bundle design optimization, safety and reactor physics assessment. The changes in fuel element and fuel bundle design contribute to the many advantages offered by the RU-43 bundle. Verification of the design of the RU-43 fuel bundle is performed in a way that shows that design criteria are met, and is mostly covered by proof tests such as flow and irradiation tests. The most relevant calculations performed on this fuel bundle design version are presented. Also, the stages of an experimental program aiming to verify the operating performance are briefly described in this paper.
Kurzfassung
Wiedergewonnenes Uran (RU) ist ein Abfallprodukt vieler Leichtwasserreaktor-Brennstoffrezyklierungsprogramme. Sein spaltbarer Anteil von 0,9 bis 1,0 % macht es ohne Wieder-Anreicherung für den erneuten Einsatz im LWR untauglich. CANDU-Reaktoren haben hingegen eine ausreichend gute Neutronen-Ökonomie, um RU als Brennstoff verwenden zu können. Das Kernforschungsinstitut in Pitesti (INR) hat die Machbarkeit des Einsatzes von RU-Brennstoff mit 0,9 bis 1,1 Gew.% U235 in den CANDU-6-Reaktoren des Kernkraftwerks Cernavoda analysiert. Der Einsatz von RU-Brennstoff würde zu einem signifikanten Anstieg des Entlade-Abbrands, von derzeit 170 MWh/kgU bei Natururan auf etwa 355 MWh/kgU, führen. Dies hätte niedrigere Brennstoffkreislaufkosten und eine bedeutende Volumen-Reduktion des abgebrannten Brennstoffs über ein Volllast-Betriebsjahr zur Folge. Ein RU-Brennstoffbündel ist unter der Bezeichnung RU-43 an INR Pitesti in der Entwicklung, es befindet sich derzeit in der endgültigen Design-Verifikation. Die anfänglichen Arbeiten konzentrierten sich auf die Design-Optimierung und Abschätzungen zu Sicherheit und Reaktorphysik des RU-43-Elements. Die Änderungen am Brennelement- und Brennstoffbündelauslegung tragen zu vielen Vorteilen des RU-43 bei. Bei der Design-Verifikation wird die Einhaltung der Auslegungskriterien nachgewiesen, sie erfolgt im Wesentlichen durch Durchfluss- und Bestrahlungsversuche. Nachstehend werden die wichtigsten Rechenergebnisse für dieses Brennstoffbündel-Design präsentiert. Darüber hinaus enthält der Beitrag eine kurze Beschreibung des Versuchsprogramms, mit dem seine Betriebseigenschaften nachgewiesen werden sollen.
References
1 Horhoianu, G., et al.: Improvement of the CANDU Fuel Element Performance in Order to Increase the Ability to Operate at High Powers and to Meet High Burnup. Final Report to IAEA Vienna Research Contract 6197/RB, INR Pitesti, Romania, 1992Suche in Google Scholar
2 Horhoianu, G., et al.: RU-43 A New Uranium fuel Bundle for Using in CANDU Type Reactors. International Conference FOREN 2006, Neptun, Romania, June 11–15, 2006Suche in Google Scholar
3 Catana, A.: Sub channel Flow Analysis in CANDU6 Reactor with RU-43 fuel. Internal Report No. 429, INR Pitesti, 2006 (in Romanian)Suche in Google Scholar
4 Patrulescu, I., Dobrea, G.: Core-Follow Simulations for a CANDU-6 Reactor Fuelled with Slightly Enriched Uranium Fuel Bundles. Internal Report No. 5537, INR Pitesti, 1999 (in Romanian)Suche in Google Scholar
5 Patrulescu, I.: Fuel Management of RU-43 in CANDU-6 Reactor. Technical Note S1 288, INR Pitesti, May 2007 (in Romanian)Suche in Google Scholar
6 Hristea, V., et al.: Calculation of End-Power-Peaking Factors for CANDU Fuels with LEGENTR Code. American Nuclear Society's 14th Biennial Topical Meeting of the Radiation Protection and Shielding Division, Carlsbad, New Mexico, USA, April 3–6, 2006Suche in Google Scholar
7 Constantin, M., et al.: Void Reactivity and Pin Power calculation for a CANDU Cell using the SEU-43 Fuel Bundle. Ann. Nucl. Energy30 (2003) 30110.1016/S0306-4549(02)00056-7Suche in Google Scholar
8 Vasii, L., Horhoianu, G.: Thermal-Mechanical Performance of Slightly Enriched Fuel Elements in CANDU-6 Reactor. Internal Report Nr. 6039, INR Pitesti, 2001 (in Romanian)Suche in Google Scholar
9 Iordache, R., Horhoianu, G.: Bowing of CANDU Fuel Elements. Internal Report Nr. 6660, INR Pitesti, 2003 (in Romanian)Suche in Google Scholar
10 Horhoianu, G., Ionescu, D.: A Finite Element Model for Statistic Strength Analysis of CANDU Fuel Bundle. Kerntechnik71 (2006) 203Suche in Google Scholar
11 Doca, L., Doca, C.: Pressure Drop Calculations for CANDU-6 Reactor Channel with Different Fuel Bundle Geometries. Internal Report Nr. 6555, INR Pitesti, 2003 (in Romanian)Suche in Google Scholar
12 Doca, L., Doca, C.: INR Pitesti Internal Report (in preparation)Suche in Google Scholar
13 Horhoianu, G., et al.: Consequences of LOCA Scenarios in SEU-43 Fuel Elements Behavior. IAEA Technical Committee Meeting on Water Reactor Fuel Element Modeling at High Burnup and its Experimental Support, 18–23 June 2000, Windermere, EnglandSuche in Google Scholar
14 Horhoianu, G., et al.: Thermal-Mechanical Analysis of Advanced CANDU Fuel Element in LOCA Conditions, Internal Report No. 6886, INR Pitesti, 2004 (in Romanian)Suche in Google Scholar
15 Horhoianu, G., et al.: Investigation of Fuel rod Behavior under Extended Burnup Conditions with ROFEM Fuel Performance Code. Ann. Nucl. Energy25 (1998) 695Suche in Google Scholar
16 Stefan, I., Papadopol, G.: Recent Validation of the CAREB code. Internal Report No. 4806, INR Pitesti, Romania, 1996 (in Romanian)Suche in Google Scholar
17 Purdy, L., Manzer, A. M.: Assessment of Sheath Strain and Fission Gas Release Data from 20 years of Power Reactor Irradiation, 5th International Conference on CANDU Fuel, 1997 September 21–25, Toronto, CanadaSuche in Google Scholar
© 2008, Carl Hanser Verlag, München
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Summaries/Kurzfassungen
- Summaries
- Technical Contributions/Fachbeiträge
- Analysis of the hydrogen behaviour in compartments of the Ignalina nuclear power plant
- Determination of the RBMK-1500 reactor passport characteristics
- Technical feasibility of using RU-43 fuel in the CANDU-6 reactors of the Cernavoda NPP
- Computational study of moderator flow and temperature fields in the calandria vessel of a heavy water reactor using the PHOENICS code
- Regulatory requirements on level 2 PSA in Germany and their associated potential to improve emergency management
- Dynamic structure response due to reactor cooling piping system failure
- Uncertainty in activation cross-section calculations at intermediate proton energies
- The LTSN solution of the transport equation for one-dimensional cartesian geometry with c = 1
- Application of the UN approximation to the neutron transport equation in slab geometry
- The reflected critical slab problem for one-speed neutrons with strongly anisotropic scattering
- The analytical representation of the fundamental mode in 1-D-geometry for the CANDLE burn-up phenomenon
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Summaries/Kurzfassungen
- Summaries
- Technical Contributions/Fachbeiträge
- Analysis of the hydrogen behaviour in compartments of the Ignalina nuclear power plant
- Determination of the RBMK-1500 reactor passport characteristics
- Technical feasibility of using RU-43 fuel in the CANDU-6 reactors of the Cernavoda NPP
- Computational study of moderator flow and temperature fields in the calandria vessel of a heavy water reactor using the PHOENICS code
- Regulatory requirements on level 2 PSA in Germany and their associated potential to improve emergency management
- Dynamic structure response due to reactor cooling piping system failure
- Uncertainty in activation cross-section calculations at intermediate proton energies
- The LTSN solution of the transport equation for one-dimensional cartesian geometry with c = 1
- Application of the UN approximation to the neutron transport equation in slab geometry
- The reflected critical slab problem for one-speed neutrons with strongly anisotropic scattering
- The analytical representation of the fundamental mode in 1-D-geometry for the CANDLE burn-up phenomenon