HN solutions of the time dependent linear neutron transport equation for a slab and a sphere
- 
            
            
        G. Türeci
        
Abstract
The HN method is used to calculate the time eigenvalues in one speed neutron transport theory for a slab and a sphere with given boundary conditions. The angular distribution of the method of elementary solutions and the orthogonality relations of the singular eigenfunctions are used. Calculations are performed considering both the angular and the incoming angular distributions at the boundaries of the given medium. Numerical values are compared with the data available in literature.
Kurzfassung
Mit Hilfe der HN-Methode werden in ebener und sphärischer Geometrie die Zeiteigenwerte in der Eingruppen-Neutronentransporttheorie unter gegebenen Randbedingungen berechnet. Dies wird ausgeführt unter Verwendung der Methode elementarer Lösungen und der Orthogonalitätsbeziehungen für singuläre Eigenfunktionen sowie unter Berücksichtigung der Winkelverteilungen an den Grenzen des gegebenen Mediums. Die numerischen Werte werden verglichen mit den in der Literatur verfügbaren Daten.
References
1Davison, B.: Neutron Transport Theory. Clarendon Press, Oxford (1957)Suche in Google Scholar
2Williams, M. M. R.: Mathematical Methods in Particle Transport Theory. Butterworths, London (1971)Suche in Google Scholar
3Duderstadt, J. J.; Martin, W. R.: Transport Theory. Wiley, New York (1979)Suche in Google Scholar
4Case, K. M.; Zweifel, P. F.: Linear Transport Theory. Addition Wesley, Reading Mass (1967)Suche in Google Scholar
5Sahni, D. C.; Sjostrand, N. G.: Progress in Nuclear Energy23 (1960) 24110.1016/0149-1970(90)90004-OSuche in Google Scholar
6Siewert, C. E.; Benoist, P.: Nucl. Sci. Eng69 (1979) 156Suche in Google Scholar
7Carlvik, I.: Nucl. Sci. Eng.31 (1968) 295Suche in Google Scholar
8Sahni, D. C.; Dahl, E. B.; Sjostrand, N. G.: Trans. Theory Statist. Phys.24 (1995) 129510.1080/00411459508206025Suche in Google Scholar
9Sahni, D. C.; Sjostrand, N. G.; Garis, N. S.: J. Phys. D; Apply. Phys.25 (1992) 138110.1088/0022-3727/25/10/001Suche in Google Scholar
10Sharma, A.; Sahni, D. C.: Ann. Nucl. Energy.20 (1993) 44910.1016/0306-4549(93)90086-5Suche in Google Scholar
11Kumar, V.; Sahni, D. C.: Nucl. Sci. Eng.76 (1980) 282Suche in Google Scholar
12Sahni, D. C.: Transp. Theory Statist. Phys.20 (1991) 48310.1080/00411459108203916Suche in Google Scholar
13Dahl, E. B.: Ann. Nucl. Energy12 (1985) 15310.1016/0306-4549(85)90092-1Suche in Google Scholar
14Garis, N. S.: Kerntechnik56 (1991) 33Suche in Google Scholar
15Sahni, D. C.; Sjostrand, N. G.: Ann. Nucl. Energy26 (1999) 34710.1016/S0306-4549(98)00072-3Suche in Google Scholar
16Devaux, C.; Siewert, C. E.; Yener, Y.: JQSRT21 (1979) 50510.1016/0022-4073(79)90091-8Suche in Google Scholar
17Garcia, R. D. M.: Transp. Theory Statist. Phys.14 (1985) 39110.1080/00411458508211686Suche in Google Scholar
18Dahl, E. B.; Sjostrand, N. G.: Ann. Nucl. Energy16 (1989) 52710.1016/0306-4549(89)90004-2Suche in Google Scholar
19Yıldız, C.: J. Phys. D: Appl. Phys32 (1999) 31710.1088/0022-3727/32/3/020Suche in Google Scholar
20Yıldız, C.: J. Phys. D: Appl. Phys.33 (2000) 70410.1088/0022-3727/33/6/319Suche in Google Scholar
21Yıldız, C.: JQSRT74 (2002) 52110.1016/S0022-4073(01)00252-7Suche in Google Scholar
22Tezcan, C.; Kaskas, A., Güleçyuz, M. C|.: JQSRT78 (2); (2003) 24310.1016/S0022-4073(02)00224-8Suche in Google Scholar
23Türeci, R. G.; Güleçyüz, M. Ç.; Kaskas, A.; TezcanC.: JQSRT88 (2004) 49910.1016/j.jqsrt.2004.04.001Suche in Google Scholar
© 2007, Carl Hanser Verlag, München
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Summaries/Kurzfassungen
- Summaries
- Technical Contributions/Fachbeiträge
- Wavelet techniques for the determination of the decay ratio in boiling water reactors
- Analytical and experimental investigations of shear stress in rod bundles with irregular cells
- Incineration of weapon grade plutoniumin a (DT) fusion driven hybrid reactor using various coolants
- Calculation of the pin power distribution for a thorium reactor assembly and benchmarking
- Comparative assessment of methods for the reactivity measurement in subcritical systems by pulsed experiments
- Thermal-hydraulic modeling of reactivity accidents in MTR reactors
- Prediction of the onset of flow instability in the ETRR-2 research reactor under loss of flow accident
- Time-dependent albedo problem for quadratic anisotropic scattering
- HN solutions of the time dependent linear neutron transport equation for a slab and a sphere
- Application of the UN method to the reflected critical slab problem for one-speed neutrons with forward and backward scattering
- The effects of different expansions of the exit distribution on the extrapolation length for linearly anisotropic scattering
- Technical Note
- Shadowing the earth from Lagrange Point L1
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Summaries/Kurzfassungen
- Summaries
- Technical Contributions/Fachbeiträge
- Wavelet techniques for the determination of the decay ratio in boiling water reactors
- Analytical and experimental investigations of shear stress in rod bundles with irregular cells
- Incineration of weapon grade plutoniumin a (DT) fusion driven hybrid reactor using various coolants
- Calculation of the pin power distribution for a thorium reactor assembly and benchmarking
- Comparative assessment of methods for the reactivity measurement in subcritical systems by pulsed experiments
- Thermal-hydraulic modeling of reactivity accidents in MTR reactors
- Prediction of the onset of flow instability in the ETRR-2 research reactor under loss of flow accident
- Time-dependent albedo problem for quadratic anisotropic scattering
- HN solutions of the time dependent linear neutron transport equation for a slab and a sphere
- Application of the UN method to the reflected critical slab problem for one-speed neutrons with forward and backward scattering
- The effects of different expansions of the exit distribution on the extrapolation length for linearly anisotropic scattering
- Technical Note
- Shadowing the earth from Lagrange Point L1