Startseite Effect of laser welding speed on the weld quality of a 5A06 aluminum alloy
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Effect of laser welding speed on the weld quality of a 5A06 aluminum alloy

  • Xiaoli Ma , Jian Lin , Jiang Ju , Yongping Lei und Hanguang Fu
Veröffentlicht/Copyright: 2. November 2018
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Laser butt welding was carried out for the joining of 5A06 aluminum alloy sheet by using 6 KW fiber laser. The effect of welding speed on the surface morphology, microstructure, micro-hardness, tensile strength and porosity were studied by means of optical microscopy (OM), a scanning electron microscope (SEM), an energy dispersive spectrometer (EDS), a Vickers hardness tester and a universal mechanical tensile test. The results show that the weld macro morphology tends to be smooth and the surface defects are reduced with an increase in welding speed. The heat-affected zone was very small due to the large cooling rate. The columnar dendrites grow from the fusion line along the direction of the temperature gradient. The microstructure of the weld zone was in the form of equiaxed grains. The micro-hardness of the weld was lower than that of the base material. The micro-hardness and the tensile strength were gradually increased with an increase in welding speed. When the welding speed is 12 mm × s−1, the micro-hardness and the tensile strength were increased to 96.5 % and 56.2 % of the base mental, respectively. The porosity ratio decreased at first, and then increased with the increase in welding speed. The lowest porosity ratio was 1.99 % when the welding speed was 12 mm × s−1. In summary, the quality of the weld was better when the welding speed was 12 mm × s−1.

Kurzfassung

Für den vorliegenden Beitrag wurden Schweißungen einer Aluminiumlegierung 5A06 mit einem 6 kW Faserlaser in Wannenlage ausgeführt. Die Auswirkung der Schweißgeschwindigkeit auf die Oberflächenmorphologie, die Mikrostruktur, die Mikrohärte, die Zugfestigkeit und die Porenbildung wurden mittels Lichtmikroskopie (Optical Microscopy – OM), Rasterelektronenmikroskopie (Scanning Electron Microscopy – SEM) energiedispersiver Spektroskopie (Energy Dispersive Spectroscopy – EDS) eines Vickers-Härteprüfgerät und einer Universalzugprüfmaschine untersucht. Die Ergebnisse zeigen, dass die Oberflächenmorphologie eine glattere Tendenz aufweist und dass die Oberflächendefekte abnehmen, wenn die Schweißgeschwindigkeit erhöht wird. Die Wärmeeinflusszone (heat affected zone – HAZ) war aufgrund der hohen Abkühlgeschwindigkeit sehr schmal. Die Dendriten wachsen im Schweißgut ausgehend von der Schmelzlinie in Richtung des Temperaturgradienten. Die Mikrostruktur der Schweißverbindung wies gleichachsige Körner auf. Die Mikrohärte der Schweißverbindung lag unter der des Grundwerkstoffes. Mit zunehmender Schweißgeschwindigkeit stiegen die Mikrohärte und die Zugfestigkeit graduell an. Bei einer Schweißgeschwindigkeit von 12 mm × s−1 wurden die Mikrohärte und die Zugfestigkeit auf 96.5 % und 56.2 % entsprechend gegenüber dem Grundwerkstoff erhöht. Die Porösität nahm zunächst ab, dann aber mit weiterer Erhöhung der Schweißgeschwindigkeit zu. Die niedrigste Porenbildung ergab sich mit 1.99 %, als die Schweißgeschwindigkeit 12 mm × s−1 betrug. Zusammenfassend ergab sich, dass die Schweißnahtqualität besser war, wenn die Schweißgeschwindigkeit 12 mm × s−1 betrug.


*Correspondence Address, Prof. Dr. Hanguang Fu, School of Materials Science and Engineering, Beijing University of Technology, Number 100, Pingle Garden, Chaoyang District, Beijing 100124, P. R. China, E-mail:

Xiaoli Ma, born in 1991, is a Master's candidate at the Beijing University of Technology, China. She obtained her Bachelor's degree at the School of Mechanical Engineering at Shandong Jiaotong University, China in 2014. Her research interests mainly focus on aluminum alloy materials.

Dr. Jian Lin, born in 1979, is an Associate Professor at Beijing University of Technology, P. R. China. He obtained his PhD at the Department of Mechanical Engineering, Tsinghua University, Beijing, China in 2006. His research interests mainly focus on the joining method of steel to aluminum and welding residual stress analysis.

Jiang Ju, born in 1990, is a PhD candidate at Shanghai Jiao Tong University, China. He obtained his Master's degree at the school of Materials Science and Engineering at Beijing University of Technology in 2017. His research interests mainly focus wear-resistant materials, superalloy and 3D printing.

Prof. Dr. Yongping Lei, born in 1957, is a Professor at Beijing University of Technology, China. He obtained his PhD at the School of Materials Science and Engineering at Xi'an Jiaotong University, China in 1994. His research interests mainly focus on the development of lead-free solder paste, the reliability of solder joint and welding.

Prof. Dr. Hanguang Fu, born in 1964, is a Professor at the Beijing University of Technology, China. He obtained his PhD at the School of Materials Science and Engineering at Xi'an Jiaotong University in 2004. His research interests mainly focus on solidification control.


References

1 T.Dursun, C.Soutis: Recent developments in advanced aircraft aluminum alloys, Mater. Des56 (2014), No. 4, pp. 86287110.1016/j.matdes.2013.12.002Suche in Google Scholar

2 N.Guo, Y.Fu, Y.Wang, Q.Meng, Y.Zhu: Microstructure and mechanical properties in friction stir welded 5A06 aluminum alloy thick plate, Materials & Design113 (2017), pp. 27328310.1016/j.matdes.2016.10.030Suche in Google Scholar

3 L.Mei, G.Chen, X.Jin, M.Zhang, M.Chen: Study on fiber laser overlap-welding of automobile aluminum alloy, Chinese Journal of Lasers37 (2010), No. 8, pp. 2091209710.3788/CJL20103708.2091Suche in Google Scholar

4 P.Yu, G.Xu, X.Gu, G.Zhou, Y.Tian: A low-cost infrared sensing system for monitoring the MIG welding process, International Journal of Advanced Manufacturing Technology92 (2017), No. 9–12, pp. 4031403810.1007/s00170-017-0515-7Suche in Google Scholar

5 A.Kumar, S.Sundarrajan: Optimization of pulsed TIG welding process parameters on mechanical properties of AA 5456 Aluminum alloy weldments, Materials & Design30 (2009), No. 4, pp. 1288129710.1016/j.matdes.2008.06.055Suche in Google Scholar

6 M.Sivashanmugam, T.Kumar, C. J.Shanmugam, M.Sathishkumar: Investigation of microstructure and mechanical properties of GTAW and GMAW joints on AA7075 aluminum alloy, Frontiers in Automobile and Mechanical Engineering21 (2010), No. 2, pp. 24124610.1109/FAME.2010.5714843Suche in Google Scholar

7 N.An, X.Zhang, W.Yang, R.Xiao: Electrical current assisted laser welding of 2060 aluminum-lithium alloy with filler wire, Transactions of the China Welding Institution38 (2017), No. 3, pp. 838610.3788/CJL201441.1003009Suche in Google Scholar

8 Y.Yu, C.Wang, S.Yu: Microstructures and property of butt laser joints of 5A06 aluminum alloy sheets with filler, Laser Technology34 (2010), No. 1, pp. 342510.3969/j.issn.1001-3806.2010.01.010Suche in Google Scholar

9 Z.Tian, G.Ma, Y.Shi, P.Wang: Formation and inhibition mechanism of porosity defects in laser welding of aluminum alloy, Electric Welding Machine46 (2016), No. 9, pp. 242810.7512/j.issn.1001-2303.2016.09.06Suche in Google Scholar

10 W.Tao, Z.Yang, C.Shi, D.Dong: Simulating effects of welding speed on melt flow and porosity formation during double-sided laser beam welding of AA6056-T4/AA 6156-T6 aluminum alloy T-joint, Journal of Alloys & Compounds699 (2016), pp. 63864710.1016/j.jallcom.2016.12.371Suche in Google Scholar

11 M.Kutsuna, S.Kitamura, K.Shibata, H.Sakamoto, K.Tsushima: Improvement of the joint performance in laser welding of aluminum alloys, Welding in the World50 (2006), No. 1–2, pp. 222710.1007/bf03266511Suche in Google Scholar

12 N.Matsumoto, Y.Kawahito, K.Nishimoto, S.Katayama: Effects of laser focusing properties on weld ability in high-power fiber laser welding of thick high-strength steel plate, Journal of Laser Applications29 (2017), No. 110.2351/1.4966258Suche in Google Scholar

13 S. V.Kuryntsev, A. E.Morushkin, A. K.Gilmutdinov: Fiber laser welding of austenitic steel and commercially pure copper butt joint, Optics & Lasers in Engineering90 (2017), pp. 10110910.1016/j.optlaseng.2016.10.008Suche in Google Scholar

14 Y.Nirsanametla, S.Bag, C. P.Paul, L. M.Kukreja: Fiber laser welding of austenitic stainless steel in protective atmosphere of argon, Proc. of the Asia Pacific IIW International Congress 2013 on Recent Development in Welding and Joining Technologies90 (2013) 10.1007/s00170-015-8194-8Suche in Google Scholar

15 C.Cui, X.Cui, X.Ren, T.Liu, J.Hu, Y.Wang: Microstructure and micro-hardness of fiber laser butt welded joint of stainless steel plates, Materials & Design49 (2013), pp. 76176510.1016/j.matdes.2013.02.059Suche in Google Scholar

16 Y.Zhao, Z.Lei, Y.Chen, W.Tao: A comparative study of laser-arc double-sided welding and double-sided arc welding of 6 mm 5A06 aluminum alloy, Materials & Design32 (2011), No. 4, pp. 2165217110.1016/j.matdes.2010.11.041Suche in Google Scholar

17 J.Yang, K.Wang, H.Cao, Y.Feng, T.Wu: Microstructure and mechanical properties of thick 5A06 aluminum alloy welding joint in tandem PMIG welding, Transactions of the China Welding Institution36 (2015), No. 6, pp. 232610.7666/d.d071847Suche in Google Scholar

18 S.Gao, Z.Wu, P.Jin, J.Wang, P.Shuai: Effect of deep cryogenic treatment on microstructure of 5A06 aluminum alloy MIG welded joint, Materials Science Forum724 (2012), pp. 18218510.4028/www.scientific.net/MSF.724.182Suche in Google Scholar

19 B.Li, Z.Tang, J.Yan, Y. ChengY: Research on friction stir welding parameters of thick 5A06 aluminum alloy, Hot Working Technology40 (2011), No. 11, pp. 15215410.14158/j.cnki.1001-3814.2011.11.049Suche in Google Scholar

20 Y.Zhou, G.Chen, Y.Zhang, S.Li, Y.Jiang: Research on laser-MIG hybrid welding technology of aluminum alloy, Laser Technology36 (2016), No. 2, pp. 15616410.3788/AL20153502.0203Suche in Google Scholar

21 P.Leo, S.D'Ostuni, G.Casalino: Hybrid welding of AA5754 annealed alloy: Role of post weld heat treatment on microstructure and mechanical properties, Materials & Design90 (2016), pp. 77778610.13140/RG.2.1.4209.3685Suche in Google Scholar

22 J.Chen, Y.Wei, X.Zhan, P.Pan: Weld profile, microstructure, and mechanical property of laser-welded butt joints of 5A06 Al alloy with static magnetic field support, International Journal of Advanced Manufacturing Technology92 (2017), No. 2, pp. 11010.1007/s00170-017-0268-3Suche in Google Scholar

23 C.Chen, S.Xue, H.Sun, Z.Lin, Y.Li: Microstructure and mechanical properties of welded joint of 5083 aluminum alloy by TIG welding, Transactions of the China Welding Institution35 (2014), No. 1, pp. 374010.3976/j.issn.1002-4026.2012.03.019Suche in Google Scholar

24 X.Zhan, J.Chen, J.Liu, Y.Wei, J.Zhou, Y.Meng: Microstructure and magnesium burning loss behavior of AA6061 electron beam welding joints, Materials & Design99 (2016), pp. 44945810.1016/j.matdes.2016.03.058Suche in Google Scholar

25 D.Zhang, T.Wang, F.Liu, Y.Yang, C.Li, G.Tan, S.Wang, Y.Sun: Study on MIG and laser hybrid welding technology of aluminum alloy, Laser & Infrared45 (2015), No. 6, pp. 61161510.3969/j.issn.1001-5078.2015.06.003Suche in Google Scholar

26 Q.Wang, H.Chen, Z.Zhu, P.Qiu, Y.Cui: A characterization of microstructure and mechanical properties of A6N01S-T5 aluminum alloy hybrid fiber laser-MIG welded joint, International Journal of Advanced Manufacturing Technology5 (2016), No. 5, pp. 11010.1007/s00170-015-8280-ySuche in Google Scholar

27 J.Huang, N.Warnken, J.Gebelin, M.Strangwood, R. C.Reed: On the mechanism of porosity formation during welding of titanium alloys, Acta Materialia60 (2012), No. 6–7, pp. 3215322510.1016/j.actamat.2012.02.035Suche in Google Scholar

28 Y.Yu, C.Wang, X.Hu, J.Wang, S.Yu: Porosity in fiber laser formation of 5A06 aluminum alloy, Journal of Mechanical Science & Technology24 (2010), No. 5, pp. 1077108210.1007/s12206-010-0309-4Suche in Google Scholar

29 M.Chen, J.Xu, L.Xin, Z.Zhao, F.Wu, S.Ma, Y.Zhang: Effect of keyhole characteristics on porosity formation during pulsed laser GTA hybrid welding of AZ31B magnesium alloy, Optics & Lasers in Engineering93 (2017), pp. 13914510.1016/j.optlaseng.2017.01.018Suche in Google Scholar

30 I.Bunaziv, O. M.Akselsen, A.Salminen, A.Unt: Fiber laser-MIG hybrid welding of 5 mm 5083 aluminum alloy, Journal of Materials Processing Technology233 (2016), pp. 10711410.1016/j.jmatprotec.2016.02.018Suche in Google Scholar

31 H.Miao, G.Yu, X.He, S.Li, X.Chen: Comparative study of hybrid laser–MIG leading configuration on porosity in aluminum alloy beam-on-plate welding, International Journal of Advanced Manufacturing Technology91 (2017), No. 5–8, pp. 2681268810.1007/s00170-016-9917-1Suche in Google Scholar

32 R.Lin, H. P.Wang, F.Lu, J.Solomon, B. E.Carlson: Numerical study of keyhole dynamics and keyhole-induced porosity formation in remote laser welding of Al alloys, International Journal of Heat & Mass Transfer108 (2017), pp. 24425610.1016/j.ijheatmasstransfer.2016.12.019Suche in Google Scholar

Published Online: 2018-11-02
Published in Print: 2018-11-15

© 2018, Carl Hanser Verlag, München

Heruntergeladen am 22.10.2025 von https://www.degruyterbrill.com/document/doi/10.3139/120.111253/html
Button zum nach oben scrollen