Mechanical properties and microstructure of autoclaved green UHPC blended with granite stone powders
-
Yongning Liang
, Yizhou Zhuang , Y. Frank Chen , Tao Ji , Yichun Huang and Zhen Ng
Abstract
Granite stone powder is a common type of stone-product industrial waste spreading over Fujian Province and other areas of China, causing serious environmental problems. This paper investigates the possibility of using granite stone powder to completely or partially replace quartz powder for preparing “Green” or “Eco” ultra-high performance concrete under autoclave curing regimes. The mechanical properties and microstructure of autoclaved ultra-high-performance concrete (UHPC) mixed with different replacement ratios of granite stone powders were tested. It was found that its mechanical properties still satisfied the original requirements even after total replacement of quartz powders by granite stone powders. Despite of a slight decrease in flowability after total replacement, flexural and compressive strength did not change significantly. The hydration product of flaky tobermorite crystal was found in both granite stone powder blended UHPC and in quartz powder blended UHPC, while the Ca/Si ratio varied slightly. Furthermore, the pore structure of unadulterated UHPC improved due to a larger population of harmless and less-harmful pores after quartz powder were replaced by granite stone powder.
Kurzfassung
Granitpulver ist eine häufige Art von Industrie-Gesteinsabfällen, die überall in der Provinz Fujian und in China verteilt sind und erhebliche Umweltschädigungen nach sich zieht. In der diesem Beitrag zugrunde liegenden Studie wurde die Möglichkeit untersucht, Granitpulver zu verwenden, um vollständig oder teilweise Quartzpulver zu ersetzen, um umweltfreundlichen hochfesten Beton (Ultra-High Performance Concrete – UHPC) unter Autoklavbedingungen herzustellen. Die mechanischen Eigenschaften und die Mikrostruktur von im Autoklav hergestellten UHPC, die mit verschiedenen Verhältnissen von Granitpulver als Ersatz gemischt wurden, wurden geprüft. Es stellte sich heraus, dass dessen mechanische Eigenschaften selbst dann die ursprünglichen Anforderungen erfüllen, wenn die Quartzpulver zu 100 % durch Granitpulver ersetzt werden. Trotz einer leichten Abnahme der Fließfähigkeit nach 100 % Ersatz änderten sich die Biegefestigkeit und die Druckfestigkeit nicht signifikant. Das Hydratisierungsprodukt eines flockigen Tobermoritkristalles wurde sowohl im mit Granitpulver als auch im mit Quartzpulver gemischten UHPC gefunden, während das Ca/Si-Verhältnis leicht unterschiedlich war. Darüber hinaus wurde die Porenstruktur des UHPC verbessert, indem sich eine größere Ansiedelung von harmlosen und weniger kritischen Poren einstellte, nachdem die Quartzpulver durch Granitpulver ersetzt wurden.
References
1 Y. W.Chan, S. H.Chu: Effect of silica fume on steel fiber bond characteristics in reactive powder concrete, Cement and Concrete Research34 (2004), No. 7, pp. 1167–117210.1016/j.cemconres.2003.12.023Search in Google Scholar
2 V.Morin, F.Cohen-Tenoudji, A.Feylessoufi, P.Richard: Evolution of the capillary network in a reactive powder concrete during hydration process, Cement and Concrete Research32 (2002), No. 12, pp. 1907–191410.1016/S0008-8846(02)00893-1Search in Google Scholar
3 P.Richard, M.Cheyrezy: Composition of reactive powder concretes, Cement and Concrete Research25 (1995), No. 7, pp. 1501–151110.1016/0008-8846(95)00144-2Search in Google Scholar
4 H.Zanni, M.Cheyrezy, V.Maret, S.Philippot, P.Nieto: Investigation of hydration and pozzolanic reaction in Reactive Powder Concrete (RPC) using 29Si NMR, Cement and Concrete Research26 (1996), No. 1, pp. 93–10010.1016/0008-8846(95)00197-2Search in Google Scholar
5 H.Yazıcı, H.Yiğiter, A. Ş.Karabulut, B.Baradan: Utilization of fly ash and ground granulated blast furnace slag as an alternative silica source in reactive powder concrete, Fuel87 (2008), No. 12, pp. 2401–240710.1016/j.fuel.2008.03.005Search in Google Scholar
6 S.Allena, C. M.Newtson: Ultra-high strength concrete mixtures using local materials, Journal of Civil Engineering and Architecture5 (2011), No. 4, pp. 322–33010.13140/2.1.2465.3764Search in Google Scholar
7 S.Hu, Y.Peng, K.Chen, Q.Ding: Preparation and deformation properties of reactive powder concrete (UHPC) with steel slag powder, Journal of Wuhan University of Technology31 (2009), No. 1, pp. 26–33 (In Chinese)Search in Google Scholar
8 J.Liu, D.Wang, S.Song, W.Huo: Research on durability and micro structure of high volume fine mineral mixture of reactive powder concrete, Journal of Wuhan University of Technology30 (2008), No. 11, pp. 54–68 (In Chinese)Search in Google Scholar
9 J.Zhen: The experimental research on metakaolin reaction powder concrete, Building Science24 (2008), No. 5, pp. 46–49 (In Chinese)Search in Google Scholar
10 R.Cai: Preparation of High Active Rice Husk Silica and it's Application to the Super High Performance Concrete, Jinan University (2008) (In Chinese)Search in Google Scholar
11 Y. S.Zhang, W.Sun, S. F.Liu, C. J.Jiao, J. Z.Lai: Preparation of C200 green reactive powder concrete and its static–dynamic behaviors, Cement and Concrete Composites30 (2008), No. 9, pp. 831–83810.1016/j.cemconcomp.2008.06.008Search in Google Scholar
12 H.Cao, L.Luo, F.Sun, S.Liang, Z.An, J.Xue: Preparation of high strength concrete aggregate dolomite sand, Journal of Wuhan University of Technology35 (2013), No. 3, pp. 57–61 (In Chinese).Search in Google Scholar
13 A.Guo, F.Zhao, H.Ba, Y.Liu: Research on the mix optimization and shrinkage properties of reactive powder concrete, Journal of Wuhan University of Technology2 (2009) (In Chinese)Search in Google Scholar
14 S.Liu, W.Sun, W.Lin, J.Lai: Preparation and durability of a high performance concrete with natural ultra-fine particles, Journal of the Chinese Ceramic Society31 (2003), No. 11, pp. 1080–1085 (In Chinese).Search in Google Scholar
15 S.Zhong, H.Gao, Y.Wang: Preparation of reactive powder concrete with high flowability, Journal of Building Materials11 (2008), No. 1, pp. 58–63 (In Chinese)Search in Google Scholar
16 G.Chen: Mechanical Properties of Granite Powder Mixed with Autoclaved Concrete and Durability, Fuzhou University (2013) (In Chinese)Search in Google Scholar
17 GB/T2419-2005: Test Method for Fluidity of Cement Mortar, China State Standard (In Chinese), China (2005)Search in Google Scholar
18 GB/T 17671-1999: Test Method for Strength of Cement Mortar, China State Standard (In Chinese), China (1999)Search in Google Scholar
© 2018, Carl Hanser Verlag, München
Articles in the same Issue
- Inhalt/Contents
- Contents
- Fachbeiträge/Technical Contributions
- Bending deformation and indentation hardness of electrochemically deposited nanocrystalline nickel-iron alloys
- Al-Si piston alloy behavior under combined mechanical and thermal cyclic loading with superimposed high-frequency thermal cycling
- Porosity of LMD manufactured parts analyzed by Archimedes method and CT
- Structure and mechanical properties of ADC 12 Al foam-polymer interpenetrating phase composites with epoxy resin or silicone
- Strength changes of 40 Cr steel subjected to cyclic torsion below the fatigue limit
- Auxetic aluminum sheets in lightweight structures
- Effect of thickness on the fracture toughness of high strength steel for gas well casings
- Effect of laser welding speed on the weld quality of a 5A06 aluminum alloy
- Correlation of ultrasound velocity with physico-mechanical properties of Jodhpur sandstone
- Etching behavior of ZnO:Ga thin films
- Repair of an aluminum plate with an elliptical hole using a composite patch
- Impression creep behavior of extruded ZK60 and ZK60+1 %Y magnesium alloys
- Experimental study for the bearing capacity calculation of concrete expanded plates in squeezed branch piles
- Mechanical properties and microstructure of autoclaved green UHPC blended with granite stone powders
- Mechanical properties and microstructure of glass carbon hybrid composites
Articles in the same Issue
- Inhalt/Contents
- Contents
- Fachbeiträge/Technical Contributions
- Bending deformation and indentation hardness of electrochemically deposited nanocrystalline nickel-iron alloys
- Al-Si piston alloy behavior under combined mechanical and thermal cyclic loading with superimposed high-frequency thermal cycling
- Porosity of LMD manufactured parts analyzed by Archimedes method and CT
- Structure and mechanical properties of ADC 12 Al foam-polymer interpenetrating phase composites with epoxy resin or silicone
- Strength changes of 40 Cr steel subjected to cyclic torsion below the fatigue limit
- Auxetic aluminum sheets in lightweight structures
- Effect of thickness on the fracture toughness of high strength steel for gas well casings
- Effect of laser welding speed on the weld quality of a 5A06 aluminum alloy
- Correlation of ultrasound velocity with physico-mechanical properties of Jodhpur sandstone
- Etching behavior of ZnO:Ga thin films
- Repair of an aluminum plate with an elliptical hole using a composite patch
- Impression creep behavior of extruded ZK60 and ZK60+1 %Y magnesium alloys
- Experimental study for the bearing capacity calculation of concrete expanded plates in squeezed branch piles
- Mechanical properties and microstructure of autoclaved green UHPC blended with granite stone powders
- Mechanical properties and microstructure of glass carbon hybrid composites