Home Dry sliding behavior of the aluminum alloy 8011 composite with 8 % fly ash
Article
Licensed
Unlicensed Requires Authentication

Dry sliding behavior of the aluminum alloy 8011 composite with 8 % fly ash

  • Subramaniam Magibalan , Palanisamy Senthilkumar , Chinnamuthu Senthilkumar , Annamalai Nagar , Rajagounder Palanivelu and Muthusamy Prabu
Published/Copyright: July 13, 2018
Become an author with De Gruyter Brill

Abstract

This study focuses on the fabrication of aluminum alloy 8011 with 8 % fly ash (FA) composite (AA8011-8 % FA), using the stir casting method. The dry sliding wear characteristics of the composite were investigated at various sliding parameters. A three-level central composite design experiment was developed using response surface methodology with various parameters such as load, time, and sliding velocity and varied in the range of 5 to 15 N, 5 to 15 min, and 1.5 to 4.5 m × s−1, respectively. Dry sliding wear tests were performed as per the experimental design using a pin-on disc at room temperature. The regression result obtained indicated that the developed model performed well in relating the wear process parameters and predicted the wear behavior of the composite. The surface plot showed that the wear rate increases with increase in load, time, and sliding velocity. Moreover, the surface morphology of the worn-out composite was examined using a scanning electron microscope.

Kurzfassung

Die diesem Beitrag zugrunde liegende Studie konzentriert sich auf die Herstellung der Aluminiumlegierung 8011 mit 8 % Flugasche (FA) als Kompositwerkstoff (AA8011-8 % FA) mittels des Rührgießverfahrens. Die Trockenverschleißcharakteristika des Komposites wurden für verschiedene Reibparameter untersucht. Hierzu wurde eine Versuchsanordnung für die dreilagigen Komposite entwickelt, in dem das Oberflächenantwortverfahren angewandt wurde, und zwar mit verschiedenen Parametern, wie die Belastung, die Zeit und die Reibgeschwindigkeit, die jeweils im Bereich von 5 bis 15 N, 5 bis 15 min und 1.5 bis 4.5 m × s−1 variiert wurden. Es wurden Trockenverschleißversuche mittels eines Stift-Scheibe-Experimentes bei Raumtemperatur durchgeführt. Die daraus gewonnenen Regressionsanalyseergebnisse deuten darauf hin, dass das entwickelte Modell sich gut verhält, was die Relation des Verschleißprozessparameters und die Vorhersage des Verschleißverhaltens des Komposites anbetraf. Das Oberflächendiagramm zeigte, dass die Verschleißrate mit zunehmender Belastung, Zeit und Reibgeschwindigkeit ansteigt. Darüber hinaus wurde die Morphologie der jeweils reibbeanspruchten Oberfläche mittels Rasterelektronenmikroskopie untersucht.


*Correspondence Address, S. Magibalan, Department of Mechanical Engineering, K. S. R. College of Engineering, Tiruchengode, 637215, Tamil Nadu, India, E-mail:

Assist. Prof. Subramaniam Magibalan, born in 1990, received a Master's degree in Engineering Design at K. S. Rangasamy college of Technology, Tiruchengode, Tamil Nadu, India in 2014. He obtained his Bachelor's degree in Mechanical Engineering at the Karpagam College of Engineering, Tamil Nadu, India in 2008. He currently works as Assistant Professor in the Department of Mechanical Engineering at K. S. R. College of Engineering, Tiruchengode, Tamil Nadu, and India.

Prof. Dr. Palanisamy Senthil born in 1971 holds a PhD in Cryogenic Engineering from IIT Madras, Chennai, India, since 2005. He graduated with a Master's degree in Mechanical Engineering from Bharathiyar University, Tamil Nadu, India in 1997 and with a Bachelor's degree in Mechanical Engineering from AIME degree, Calcutta, India in 1994. He currently works as Professor and Head of the Department of Mechanical Engineering at K. S. R. College of Engineering, Tiruchengode, Tamil Nadu, India.

Assist. Prof. Dr. Chinnamuthu Senthilkumar, born in 1971, holds a PhD in Manufacturing Engineering from Annamalai University, Annamalai Nagar, India, since 2011. He graduated with a Master's degree and a Bachelor's degree in Mechanical and Production Engineering from the same university in 2002 and 1993, respectively. He currently works as Assistant Professor in the Department of Manufacturing Engineering at Annamalai University in Annamalai Nagar, Tamil Nadu, India.

Prof. Dr. Rajagoundar Palanivelu, holds a PhD in Nano science and Technology from Anna university India, since 2015. He graduated with a M.Phil and M.Sc degree in Chemistry from the Bharathiar University in 2003 and 1997, respectively. He currently works as Professor and Head in the Department of Chemistry at K. S. Rangasamy College of Technology, Tiruchengode, Tamil Nadu, India.

Assoc. Prof. Dr. Muthusamy Prabu, born in 1981, holds a PhD in Mechanical Engineering from Anna University, Tamil Nadu, India since 2016. He graduated with a Master's degree in Manufacturing Engineering from Annamalai University, Annamalai Nagar, Tamil Nadu, India in 2006, and with a Bachelor's degree in Mechanical Engineering from Bharathiar University, Tamil Nadu, India in 2004. He currently works as Associate Professor in the Department of Mechanical Engineering at K. S. R. College of Engineering, Tiruchengode, Tamil Nadu, India.


References

1 S.Suresh, N.ShenbagaVinayagaMoorthi, S. C.Vettivel, N.Selvakumar: Mechanical behavior and wear prediction of stir cast Al–TiB2 composites using response surface methodology, Materials & Design59 (2014), pp. 38339610.1016/j.matdes.2014.02.053Search in Google Scholar

2 N.Radhika, R.Raghu: Dry sliding wear behaviour of aluminum Al–Si12Cu/TiB2 metal matrix composite using response surface methodology, Tribology Letters59 (2015), No. 1, pp. 1910.1007/s11249-015-0516-3Search in Google Scholar

3 A.Baradeswaran, S. C.Vettivel, A. ElayaPerumal, N.Selvakumar, R. FranklinIssac: Experimental investigation on mechanical behaviour, modelling and optimization of wear parameters of B4C and graphite reinforced aluminium hybrid composites, Materials & Design63 (2014), pp. 62063210.1016/j.matdes.2014.06.054Search in Google Scholar

4 S.Koksal, F.Ficici, R.Kayikci, O.Savas: Experimental optimization of dry sliding wear behavior of in situ AlB2/Al composite based on Taguchi's method, Materials & Design42 (2012), pp. 12413010.1016/j.matdes.2012.05.048Search in Google Scholar

5 I.Dinaharan, N.Murugan: Dry sliding wear behavior of AA6061/ZrB2 in-situ composite, Transactions of Nonferrous Metals Society of China, 22 (2012), No. 4, pp. 81081810.1016/s1003-6326(11)61249-1Search in Google Scholar

6 Y.Sahin: Wear behaviour of aluminium alloy and its composites reinforced by SiC particles using statistical analysis, Materials & Design24 (2003), No. 2, pp. 9510310.1016/s0261-3069(02)00143-7Search in Google Scholar

7 A. M.Al-Qutub, A.Khalil, N.Saheb, A. S.Hakeem: Wear and friction behavior of Al6061 alloy reinforced with carbon nanotubes, Wear297 (2013), No. 1–2, pp. 75276110.1016/j.wear.2012.10.006Search in Google Scholar

8 B. A.Kumar, N.Murugan, I.Dinaharan: Dry sliding wear behavior of stir cast AA6061-T6/AlNp composite, Transactions of Nonferrous Metals Society of China24 (2014), No. 9, pp. 2785279510.1016/s1003-6326(14)63410-5Search in Google Scholar

9 V. R.Rao, N.Ramanaiah, M. M. M.Sarcar: Tribological properties of aluminium metal matrix composites (AA7075 Reinforced with titanium carbide (TiC) particles), International Journal of Advanced Science and Technology88 (2016), pp. 132610.14257/ijast.2016.88.02Search in Google Scholar

10 A.Baradeswaran, A. ElayaPerumal: Effect of graphite on tribological and mechanical properties of AA7075 composites, Tribology Transactions58 (2014), No. 1, pp. 1610.1080/10402004.2014.947663Search in Google Scholar

11 N.Mandal, H.Roy, B.Mondal, N. C.Murmu, S. K.Mukhopadhyay: Mathematical modeling of wear characteristics of 6061 Al-Alloy-SiCp composite using response surface methodology, Journal of Materials Engineering and Performance21 (2011), No. 1, pp. 172410.1007/s11665-011-9890-7Search in Google Scholar

12 S.Selvi, E.Rajasekar: Theoretical and experimental investigation of wear characteristics of aluminum based metal matrix composites using RSM, Journal of Mechanical Science and Technology29 (2015), No. 2, pp. 78579210.1007/s12206-015-0140-zSearch in Google Scholar

13 S.Basavarajappa, G.Chandramohan, J. PauloDavim: Application of Taguchi techniques to study dry sliding wear behaviour of metal matrix composites, Materials & Design28 (2007), No. 4, pp. 1393139810.1016/j.matdes.2006.01.006Search in Google Scholar

14 T.Rajmohan, K.Palanikumar, S.Ranganathan: Evaluation of mechanical and wear properties of hybrid aluminium matrix composites, Transactions of Nonferrous Metals Society of China23 (2013), No. 9, pp. 2509251710.1016/s1003-6326(13)62762-4Search in Google Scholar

15 C.Senthilkumar, G.Ganesan: Electrical discharge surface coating of EN38 Steel with WC/Ni composite electrode, Journal of Advanced Microscopy Research10 (2015), No. 3, pp. 20220710.1166/jamr.2015.1263Search in Google Scholar

16 S.Magibalan, P.Senthilkumar, C.Senthilkumar, R.Palanivelu, M.Prabu: Dry sliding behavior of the Aluminum Alloy 8011 with 4 % fly ash60 (2018), No. 2, pp. 20921410.3139/120.111126Search in Google Scholar

Published Online: 2018-07-13
Published in Print: 2018-07-16

© 2018, Carl Hanser Verlag, München

Articles in the same Issue

  1. Inhalt/Contents
  2. Contents
  3. Fachbeiträge/Technical Contributions
  4. An investigation of the crash performance of magnesium, aluminum and advanced high strength steels and different cross-sections for vehicle thin-walled energy absorbers
  5. Model-based correlation between change of electrical resistance and change of dislocation density of fatigued-loaded ICE R7 wheel steel specimens
  6. Tensile strength of 3D printed materials: Review and reassessment of test parameters
  7. Numerical calculation of stress concentration of various subsurface and undercutting pit types
  8. Chemical composition of chosen phase constituents in austempered ductile cast iron
  9. Investigation of initial yielding in the small punch creep test
  10. Optimization and characterization of friction surfaced coatings of ferrous alloys
  11. Influence of the milling process on TiB2 particle reinforced Al-7 wt.-% Si matrix composites
  12. In-situ compaction and sintering of Al2O3 – GNP nanoparticles using a high-frequency induction system
  13. Strain-rate controlled Gleeble experiments to determine the stress-strain behavior of HSLA steel S960QL
  14. Thermography using a 1D laser array – From planar to structured heating
  15. Schichtdickenbestimmung von Oberflächenschutzsystemen für Beton mit Impulsthermografie
  16. Microstructure and mechanical properties of fly ash particulate reinforced AA8011 aluminum alloy composites
  17. High temperature compressive behavior of three-dimensional five-directional braided composites
  18. Dry sliding behavior of the aluminum alloy 8011 composite with 8 % fly ash
  19. Review on nanostructures from catalytic pyrolysis of gas and liquid carbon sources
Downloaded on 23.10.2025 from https://www.degruyterbrill.com/document/doi/10.3139/120.111213/html
Scroll to top button