Dry sliding behavior of the aluminum alloy 8011 composite with 8 % fly ash
-
Subramaniam Magibalan
Abstract
This study focuses on the fabrication of aluminum alloy 8011 with 8 % fly ash (FA) composite (AA8011-8 % FA), using the stir casting method. The dry sliding wear characteristics of the composite were investigated at various sliding parameters. A three-level central composite design experiment was developed using response surface methodology with various parameters such as load, time, and sliding velocity and varied in the range of 5 to 15 N, 5 to 15 min, and 1.5 to 4.5 m × s−1, respectively. Dry sliding wear tests were performed as per the experimental design using a pin-on disc at room temperature. The regression result obtained indicated that the developed model performed well in relating the wear process parameters and predicted the wear behavior of the composite. The surface plot showed that the wear rate increases with increase in load, time, and sliding velocity. Moreover, the surface morphology of the worn-out composite was examined using a scanning electron microscope.
Kurzfassung
Die diesem Beitrag zugrunde liegende Studie konzentriert sich auf die Herstellung der Aluminiumlegierung 8011 mit 8 % Flugasche (FA) als Kompositwerkstoff (AA8011-8 % FA) mittels des Rührgießverfahrens. Die Trockenverschleißcharakteristika des Komposites wurden für verschiedene Reibparameter untersucht. Hierzu wurde eine Versuchsanordnung für die dreilagigen Komposite entwickelt, in dem das Oberflächenantwortverfahren angewandt wurde, und zwar mit verschiedenen Parametern, wie die Belastung, die Zeit und die Reibgeschwindigkeit, die jeweils im Bereich von 5 bis 15 N, 5 bis 15 min und 1.5 bis 4.5 m × s−1 variiert wurden. Es wurden Trockenverschleißversuche mittels eines Stift-Scheibe-Experimentes bei Raumtemperatur durchgeführt. Die daraus gewonnenen Regressionsanalyseergebnisse deuten darauf hin, dass das entwickelte Modell sich gut verhält, was die Relation des Verschleißprozessparameters und die Vorhersage des Verschleißverhaltens des Komposites anbetraf. Das Oberflächendiagramm zeigte, dass die Verschleißrate mit zunehmender Belastung, Zeit und Reibgeschwindigkeit ansteigt. Darüber hinaus wurde die Morphologie der jeweils reibbeanspruchten Oberfläche mittels Rasterelektronenmikroskopie untersucht.
References
1 S.Suresh, N.ShenbagaVinayagaMoorthi, S. C.Vettivel, N.Selvakumar: Mechanical behavior and wear prediction of stir cast Al–TiB2 composites using response surface methodology, Materials & Design59 (2014), pp. 383–39610.1016/j.matdes.2014.02.053Search in Google Scholar
2 N.Radhika, R.Raghu: Dry sliding wear behaviour of aluminum Al–Si12Cu/TiB2 metal matrix composite using response surface methodology, Tribology Letters59 (2015), No. 1, pp. 1–910.1007/s11249-015-0516-3Search in Google Scholar
3 A.Baradeswaran, S. C.Vettivel, A. ElayaPerumal, N.Selvakumar, R. FranklinIssac: Experimental investigation on mechanical behaviour, modelling and optimization of wear parameters of B4C and graphite reinforced aluminium hybrid composites, Materials & Design63 (2014), pp. 620–63210.1016/j.matdes.2014.06.054Search in Google Scholar
4 S.Koksal, F.Ficici, R.Kayikci, O.Savas: Experimental optimization of dry sliding wear behavior of in situ AlB2/Al composite based on Taguchi's method, Materials & Design42 (2012), pp. 124–13010.1016/j.matdes.2012.05.048Search in Google Scholar
5 I.Dinaharan, N.Murugan: Dry sliding wear behavior of AA6061/ZrB2 in-situ composite, Transactions of Nonferrous Metals Society of China, 22 (2012), No. 4, pp. 810–81810.1016/s1003-6326(11)61249-1Search in Google Scholar
6 Y.Sahin: Wear behaviour of aluminium alloy and its composites reinforced by SiC particles using statistical analysis, Materials & Design24 (2003), No. 2, pp. 95–10310.1016/s0261-3069(02)00143-7Search in Google Scholar
7 A. M.Al-Qutub, A.Khalil, N.Saheb, A. S.Hakeem: Wear and friction behavior of Al6061 alloy reinforced with carbon nanotubes, Wear297 (2013), No. 1–2, pp. 752–76110.1016/j.wear.2012.10.006Search in Google Scholar
8 B. A.Kumar, N.Murugan, I.Dinaharan: Dry sliding wear behavior of stir cast AA6061-T6/AlNp composite, Transactions of Nonferrous Metals Society of China24 (2014), No. 9, pp. 2785–279510.1016/s1003-6326(14)63410-5Search in Google Scholar
9 V. R.Rao, N.Ramanaiah, M. M. M.Sarcar: Tribological properties of aluminium metal matrix composites (AA7075 Reinforced with titanium carbide (TiC) particles), International Journal of Advanced Science and Technology88 (2016), pp. 13–2610.14257/ijast.2016.88.02Search in Google Scholar
10 A.Baradeswaran, A. ElayaPerumal: Effect of graphite on tribological and mechanical properties of AA7075 composites, Tribology Transactions58 (2014), No. 1, pp. 1–610.1080/10402004.2014.947663Search in Google Scholar
11 N.Mandal, H.Roy, B.Mondal, N. C.Murmu, S. K.Mukhopadhyay: Mathematical modeling of wear characteristics of 6061 Al-Alloy-SiCp composite using response surface methodology, Journal of Materials Engineering and Performance21 (2011), No. 1, pp. 17–2410.1007/s11665-011-9890-7Search in Google Scholar
12 S.Selvi, E.Rajasekar: Theoretical and experimental investigation of wear characteristics of aluminum based metal matrix composites using RSM, Journal of Mechanical Science and Technology29 (2015), No. 2, pp. 785–79210.1007/s12206-015-0140-zSearch in Google Scholar
13 S.Basavarajappa, G.Chandramohan, J. PauloDavim: Application of Taguchi techniques to study dry sliding wear behaviour of metal matrix composites, Materials & Design28 (2007), No. 4, pp. 1393–139810.1016/j.matdes.2006.01.006Search in Google Scholar
14 T.Rajmohan, K.Palanikumar, S.Ranganathan: Evaluation of mechanical and wear properties of hybrid aluminium matrix composites, Transactions of Nonferrous Metals Society of China23 (2013), No. 9, pp. 2509–251710.1016/s1003-6326(13)62762-4Search in Google Scholar
15 C.Senthilkumar, G.Ganesan: Electrical discharge surface coating of EN38 Steel with WC/Ni composite electrode, Journal of Advanced Microscopy Research10 (2015), No. 3, pp. 202–20710.1166/jamr.2015.1263Search in Google Scholar
16 S.Magibalan, P.Senthilkumar, C.Senthilkumar, R.Palanivelu, M.Prabu: Dry sliding behavior of the Aluminum Alloy 8011 with 4 % fly ash60 (2018), No. 2, pp. 209–21410.3139/120.111126Search in Google Scholar
© 2018, Carl Hanser Verlag, München
Articles in the same Issue
- Inhalt/Contents
- Contents
- Fachbeiträge/Technical Contributions
- An investigation of the crash performance of magnesium, aluminum and advanced high strength steels and different cross-sections for vehicle thin-walled energy absorbers
- Model-based correlation between change of electrical resistance and change of dislocation density of fatigued-loaded ICE R7 wheel steel specimens
- Tensile strength of 3D printed materials: Review and reassessment of test parameters
- Numerical calculation of stress concentration of various subsurface and undercutting pit types
- Chemical composition of chosen phase constituents in austempered ductile cast iron
- Investigation of initial yielding in the small punch creep test
- Optimization and characterization of friction surfaced coatings of ferrous alloys
- Influence of the milling process on TiB2 particle reinforced Al-7 wt.-% Si matrix composites
- In-situ compaction and sintering of Al2O3 – GNP nanoparticles using a high-frequency induction system
- Strain-rate controlled Gleeble experiments to determine the stress-strain behavior of HSLA steel S960QL
- Thermography using a 1D laser array – From planar to structured heating
- Schichtdickenbestimmung von Oberflächenschutzsystemen für Beton mit Impulsthermografie
- Microstructure and mechanical properties of fly ash particulate reinforced AA8011 aluminum alloy composites
- High temperature compressive behavior of three-dimensional five-directional braided composites
- Dry sliding behavior of the aluminum alloy 8011 composite with 8 % fly ash
- Review on nanostructures from catalytic pyrolysis of gas and liquid carbon sources
Articles in the same Issue
- Inhalt/Contents
- Contents
- Fachbeiträge/Technical Contributions
- An investigation of the crash performance of magnesium, aluminum and advanced high strength steels and different cross-sections for vehicle thin-walled energy absorbers
- Model-based correlation between change of electrical resistance and change of dislocation density of fatigued-loaded ICE R7 wheel steel specimens
- Tensile strength of 3D printed materials: Review and reassessment of test parameters
- Numerical calculation of stress concentration of various subsurface and undercutting pit types
- Chemical composition of chosen phase constituents in austempered ductile cast iron
- Investigation of initial yielding in the small punch creep test
- Optimization and characterization of friction surfaced coatings of ferrous alloys
- Influence of the milling process on TiB2 particle reinforced Al-7 wt.-% Si matrix composites
- In-situ compaction and sintering of Al2O3 – GNP nanoparticles using a high-frequency induction system
- Strain-rate controlled Gleeble experiments to determine the stress-strain behavior of HSLA steel S960QL
- Thermography using a 1D laser array – From planar to structured heating
- Schichtdickenbestimmung von Oberflächenschutzsystemen für Beton mit Impulsthermografie
- Microstructure and mechanical properties of fly ash particulate reinforced AA8011 aluminum alloy composites
- High temperature compressive behavior of three-dimensional five-directional braided composites
- Dry sliding behavior of the aluminum alloy 8011 composite with 8 % fly ash
- Review on nanostructures from catalytic pyrolysis of gas and liquid carbon sources